
NaNChecker

Thomas Radke

Date: 2007/04/27 12:34:54

Abstract

Thorn NaNChecker reports NaN values found in CCTK grid variables.

1 Purpose

The NaNChecker thorn can be used to analyze Cactus grid variables (that is grid functions, arrays or
scalars) of real or complex data type for NaN (Not-a-Number) and (on availability of finite(3)) infinite
values. Grid variables can be periodically checked, or a call can be inserted into a thorn to check at a
specific point.

This thorn is a utility thorn, designed to be used for debugging and testing code for uninitialised
variables, or for variables which become corrupted during a simulation, for example following a division
by zero or illegal memory usage.

On many architectures, uninitialised variables will be given the value zero, and simulations using such
variables will seemingly run perfectly well. However, not only is it dubious programming practise to
assume such behaviour, but also moving to a new machine may well cause pathalogical problems (for
example, with Alpha processors used in Compaq or Cray machines). It is thus recommended to test
codes periodically with the NaNChecker, and to fix any problems as soon as they are seen.

2 Periodic Testing

Periodic testing of variables can easily be achieved by adding NaNChecker to the ActiveThorns param-
eter, and setting the parameters
NaNChecker::check every, NaNChecker::check after, and NaNChecker::check vars

to the required values. (For most testing purposes these can be set to 1, 0, and ”all” respectively).
The NaNChecker then registers a routine at CCTK ANALYSIS which checks at every NanChecker::check every

iteration – starting at iteration number NaNChecker::check after – all the variables listed in NaNChecker::check vars
for NaN or infinite values (depending on NaNChecker::check for) and — if such a value is found —
performs an action as specified in NaNChecker::action if found.

Currently these actions can be to

• just warn (the default)

just print a level 1 warning message telling you where NaNs/Infs were found and how many (for
grid array variables).
If the keyword parameter verbose is set to "all" then for each grid array it will also print the grid
indices (in Fortran notation) and the physical coordinates for all NaN/Inf elements found. You can
limit the number of such warnings by setting the NanChecker::report max parameter.

• terminate

also set the CCTK termination flag so that Cactus will stop the evolution loop and gracefully
terminate at the next time possible (giving you the choice of outputting the data from the last
evolution timestep),

1

• abort

print the warning message(s) and immediately terminate Cactus after checking all variables from
NaNChecker::check vars by a call to CCTK Abort()

By default, the current timelevel of the variables given in NaNChecker::check vars will be checked.
This can be overwritten by an optional string [timelevel=<timelevel>] appended to the variable/group
name. For example, to apply the NaNChecker to timelevel 0 of the variable grid::x, timelevel 1 of grid::y
and timelevel 2 of grid::z you would use the parameter
NaNChecker::check vars = "grid::x grid::y[timelevel=1] grid::z[timelevel=2]"

3 Tracking and Visualizing NaNs Positions

The NaNChecker thorn can also mark the positions (in grid index points) of all the NaNs found for a
given list of CCTK grid functions in a mask array and save this array to an HDF5 file.

The mask array is declared as a grid function NaNChecker::NaNmask with data type INTEGER.
Each bit i in an integer element is used to flag a NaN value found in grid function i at the corresponding
grid position (the counting for i starts at 0 and is incremented for each grid function as it appears in
NaNChecker::check vars). Thus the NaN locations of up to 32 individual grid functions can be coded
in the NaNmask array.

In order to activate the NaNmask output you need to set the parameter NaNChecker::out NaNmask
to "yes" (which is already the default) and have the IOHDF5 thorn activated.

The NaN locations can be visualized with OpenDX. An example DX network VisualizeNaNs.net and
a sample NaNmask HDF5 output file NaNmask.h5 are available via anonymous CVS from the NumRel
CVS server:

this is for (t)csh; use export CVSROOT for bash
setenv CVSROOT :pserver:cvs_anon@cvs.aei.mpg.de:/numrelcvs

CVS pserver password is ’anon’
cvs login
cvs checkout AEIPhysics/Visualization/OpenDX/Networks/Miscellaneous

4 NaNChecker API

Thorn NaNChecker also provides a function API which can be used by other code to invoke the NaNChecker
routines to test for NaN/Inf values or to set NaN values for a list of variables:

C API

int NaNChecker_CheckVarsForNaN (const cGH *cctkGH,
int report_max,
const char *vars,
const char *check_for,
const char *action_if_found);

int NaNChecker_SetVarsToNaN (const cGH *cctkGH,
const char *vars);

Fortran API

call NaNChecker_CheckVarsForNaN (ierror, cctkGH, report_max,
vars, check_for, action_if_found)

integer ierror

2

CCTK_POINTER cctkGH
integer report_max
character*(*) vars
character*(*) check_for
character*(*) action_if_found

call NaNChecker_SetVarsToNaN (ierror, cctkGH, vars)

integer ierror
CCTK_POINTER cctkGH
character*(*) vars

The report max, check vars, check for and action if found arguments have the same seman-
tics as their parameter counterparts.
If action if found is given as a NULL pointer (C API) or as an empty string (Fortran API) the routine
will be quiet and just return the number of NaN values found.

The C function NaNChecker CheckVarsForNaN() returns the total number of NaN/Inf values found,
NaNChecker SetToNaN() returns the total number of variables set to NaN; this return value is stored in
the ierror argument for the corresponding fortran wrapper routines.

3

	Purpose
	Periodic Testing
	Tracking and Visualizing NaNs Positions
	NaNChecker API

