
IOStreamedHDF5

Thomas Radke

Date: 2004/03/13 18:31:47

Abstract

Thorn IOStreamedHDF5 provides an I/O method to stream variables in HDF5 file format via
live sockets to any connected clients. It also implements checkpointing/recovery functionality using
HDF5.

1 Purpose

Thorn IOStreamedHDF5 uses the standard I/O library HDF5 (Hierarchical Data Format version 5, see
http://hdf.ncsa.uiuc.edu/whatishdf5.html for details) to output any type of CCTK grid variables
(grid scalars, grid functions, and grid arrays of arbitrary dimension) in the HDF5 file format.

Output is done by invoking the IOStreamedHDF5 I/O method which thorn IOStreamedHDF5 reg-
isters with the flesh’s I/O interface at startup.

Data is streamed as serialized HDF5 files over sockets to any connected client. Such datafiles can be
used by appropriate programs for further postprocessing (eg. remote visualization).

Data is always written unchunked by processor 0, ie. the chunks of a distributed grid function or
array will be collected from all other processors and streamed out as a single dataset. Parallel streaming
from multiple processors is not supported yet.

2 IOStreamedHDF5 Parameters

Parameters to control the IOStreamedHDF5 I/O method are:

• IOStreamedHDF5::out every (steerable)
How often to do periodic IOStreamedHDF5 output. If this parameter is set in the parameter file, it
will override the setting of the shared IO::out every parameter. The output frequency can also
be set for individual variables using the out every option in an option string appended to the
IOStreamedHDF5::out vars parameter.

• IOStreamedHDF5::out vars (steerable)
The list of variables to output using the IOStreamedHDF5 I/O method. The variables must be
given by their fully qualified variable or group name. The special keyword all requests IOStreamedHDF5
output for all variables. Multiple names must be separated by whitespaces.
An option string can be appended in curly braces to a group/variable name. Supported options are
out every (to set the output frequency for individual variables) and hyperslab options (see section
3 for details).

3 Output of Hyperslab Data

By default, thorn IOStreamedHDF5 outputs multidimensional Cactus variables with their full contents
resulting in maximum data output. This can be changed for individual variables by specifying a hyperslab
as a subset of the data within the N-dimensional volume. Such a subset (called a hyperslab) is generally

1



defined as an orthogonal region into the multidimensional dataset, with an origin (lower left corner of the
hyperslab), direction vectors (defining the number of hyperslab dimensions and spanning the hyperslab
within the N-dimensional grid), an extent (the length of the hyperslab in each of its dimensions), and an
optional downsampling factor.

Hyperslab parameters can be set for individual variables using an option string appended to the
variables’ full names in the IOStreamedHDF5::out vars parameter.

Here is an example which outputs two 3D grid functions Grid::r and Wavetoy::phi. While the
first is output with their full contents at every 5th iteration (overriding the IOStreamedHDF5::out every
parameter for this variable), a two-dimensional hyperslab is defined for the second grid function. This
hyperslab defines a subvolume to output, starting with a 5 grid points offset into the grid, spanning in the
yz-plane, with an extent of 10 and 20 grid points in y- and z-direction respectively. For this hyperslab,
only every other grid point will be output.

IOStreamedHDF5::out_every = 1
IOStreamedHDF5::out_vars = "Grid::x{ out_every = 5 }

Wavetoy::phi{ origin = {4 4 4}
direction = {0 0 0

0 1 0
0 0 1}

extent = {10 20}
downsample = {2 2} }"

The hyperslab parameters which can be set in an option string are:

• origin
This specifies the origin of the hyperslab. It must be given as an array of integer values with N
elements. Each value specifies the offset in grid points in this dimension into the N-dimensional
volume of the grid variable.
If the origin for a hyperslab is not given, if will default to 0.

• direction
The direction vectors specify both the directions in which the hyperslab should be spanned (each
vector defines one direction of the hyperslab) and its dimensionality (= the total number of dimen-
sion vectors). The direction vectors must be given as a concatenated array of integer values. The
direction vectors must not be a linear combination of each other or null vectors.
If the direction vectors for a hyperslab are not given, the hyperslab dimensions will default to N ,
and its directions are parallel to the underlying grid.

• extent
This specifies the extent of the hyperslab in each of its dimensions as a number of grid points. It
must be given as an array of integer values with M elements (M being the number of hyperslab
dimensions).
If the extent for a hyperslab is not given, it will default to the grid variable’s extent. Note that if
the origin is set to a non-zero value, you should also set the hyperslab extent otherwise the default
extent would possibly exceed the variable’s grid extent.

• downsample
To select only every so many grid points from the hyperslab you can set the downsample option.
It must be given as an array of integer values with M elements (M being the number of hyperslab
dimensions).
If the downsample option is not given, it will default to the settings of the general downsampling
parameters IO::downsample [xyz] as defined by thorn IOUtil.

4 Checkpointing & Recovery

Thorn IOStreamedHDF5 can also be used to create HDF5 checkpoints and stream them to another
Cactus simulation which recovers from such a checkpoint at the same time.

2



Checkpoint routines are scheduled at several timebins so that you can save the current state of your
simulation after the initial data phase, during evolution, or at termination. Checkpointing for thorn
IOStreamedHDF5 is enabled by setting the parameter IOStreamedHDF5::checkpoint = "yes".

A recovery routine is registered with thorn IOUtil in order to restart a new simulation from a given
HDF5 checkpoint.

Checkpointing and recovery are controlled by corresponding checkpoint/recovery parameters of thorn
IOUtil (for a description of these parameters please refer to this thorn’s documentation).

5 Building A Cactus Configuration with IOStreamedHDF5

The Cactus distribution does not contain the HDF5 header files and library which is used by thorn
IOStreamedHDF5. So you need to configure it as an external software package via:

make <configuration>-config HDF5=yes
[HDF5_DIR=<path to HDF5 package>]

The configuration script will look in some default places for an installed HDF5 package. If nothing is
found this way you can explicitly specify it with the HDF5 DIR configure variable.

Note that thorn IOStreamedHDF5 uses the Stream Virtual File Driver of the HDF5 library
as its low-level driver. This driver is not built into an HDF5 configuration by default. The configure
script of IOStreamedHDF5 will warn you if your HDF5 configuration doesn’t contain this driver and
stop the configuration process. Building an HDF5 library with Stream driver is very easy: just configure
it with the --enable-stream-vfd option and build/install as usual.

Thorn IOStreamedHDF5 inherits from IOUtil and IOHDF5Util so you need to include these
thorns in your thorn list to build a configuration with IOStreamedHDF5.

3


	Purpose
	IOStreamedHDF5 Parameters
	Output of Hyperslab Data
	Checkpointing & Recovery
	Building A Cactus Configuration with IOStreamedHDF5

