
PUGHSlab

Gabrielle Allen, Tom Goodale, Thomas Radke,
with many comments and suggestions from Erik Schnetter and Jonathan Thornburg

October 2001

Abstract

Thorn PUGHSlab implements the generic hyperslab data extraction API for CCTK arrays.

1 Introduction

Many I/O thorns output data from distributed CCTK array variables. If – in a multiprocessor run –
output is done by only one processor, it needs to collect the data from the others. This ties the I/O thorn
to the driver since it has to know about domain-decomposed data layout, interprocessor ghostzones, etc.

A clean way of separating the I/O code from the driver is to use a thorn which provides a generic
interface to get/put the distributed data on/from the I/O processor for writing/reading. This interface
can also provide more features such as downsampling, datatype conversions, or hyperslab selections. A
hyperslab is defined in this context a subset of a global CCTK array, with its own dimension, origin,
direction, and extents.

Another possible use of hyperslabs is the implementation of certain boundary conditions (e.g. reflec-
tion). By having the boundary condition code calling generic hyperslab get/put calls, it can be written
without special knowledge about driver specifics.

This thorn documentation describes the complete generic hyperslab API. All routines use CCTK data
types in their argument lists and as return codes exclusively. This allows actual implementations of this
API to be realized as CCTK function aliases. Different hyperslab thorns can then implementing the
API using the same function names, and other thorns using the API can be independent of the actual
hyperslab thorns which are compiled in.

The current version of thorn PUGHSlab implements only parts of the CCTK hyperslab API. Please
refer to section 3 for implementation details.

2 CCTK Hyperslab API Specification

In general, a hyperslab get/put operation is done in a three-level scheme:

1. In a first step, a hyperslab mapping is defined by calling one of the following routines:
Hyperslab LocalMappingByIndex()
Hyperslab LocalMappingByPhys()
Hyperslab GlobalMappingByIndex()
Hyperslab GlobalMappingByPhys()

There exists two complement sets of routines: one for the definition of local hyperslabs (which
apply to a processor’s local patch of a distributed grid variable only), and one for global hyperslabs
(which spawn the entire grid).

A mapping can be defined by either physical coordinates or by grid index points.

All hyperslab mapping routines return an integer handle which refers to an internally allocated
data structure describing the defined hyperslab.

1



2. With such a mapping, hyperslabs can then be extracted/distributed by one or more calls to
Hyperslab Get()
Hyperslab GetList()
Hyperslab Put()
Hyperslab PutList()

There are routines for getting/putting a hyperslab from/to a single grid variable or from/to a list
of variables.

3. Once all hyperslabs are done, the hyperslab mapping should be freed by a call to
Hyperslab FreeMapping().

If the Hyperslab Get*()/Hyperslab Put*() get passed a mapping for a global hyperslab, a global,
synchronuous operation will be performed (i.e., they must be called in sync by every processor). All input
arguments must be consistent between processors.

2.1 Defining a hyperslab mapping

An M -dimensional hyperslab subspace mapped into an N -dimensional space can be specified either by
coordinates on the physical grid or by index points on the underlying computational grid.

CCTK_INT Hyperslab_GlobalMappingByIndex (
CCTK_POINTER_TO_CONST GH,
CCTK_INT vindex,
CCTK_INT hdim,
const CCTK_INT *direction /* vdim*hdim */,
const CCTK_INT *origin /* vdim */,
const CCTK_INT *extent /* hdim */,
const CCTK_INT *downsample /* hdim */,
CCTK_INT table_handle,
CCTK_FPOINTER conversion_fn,
CCTK_INT *hsize /* hdim */);

CCTK_INT Hyperslab_GlobalMappingByPhys (
CCTK_POINTER_TO_CONST GH,
CCTK_INT vindex,
CCTK_INT hdim,
CCTK_STRING coord_system_name,
const CCTK_INT *direction /* vdim*hdim */,
const CCTK_REAL *origin /* vdim */,
const CCTK_REAL *extent /* hdim */,
const CCTK_INT *downsample /* hdim */,
CCTK_INT table_handle,
CCTK_FPOINTER conversion_fn,
CCTK_INT *hsize /* hdim */);

CCTK_INT Hyperslab_LocalMappingByIndex (
CCTK_POINTER_TO_CONST GH,
CCTK_INT vindex,
CCTK_INT hdim,
const CCTK_INT *direction /* vdim*hdim */,
const CCTK_INT *origin /* vdim */,
const CCTK_INT *extent /* hdim */,
const CCTK_INT *downsample /* hdim */,
CCTK_INT table_handle,
CCTK_FPOINTER conversion_fn,
CCTK_INT *hsize_local, /* hdim */

2



CCTK_INT *hsize_global, /* hdim */
CCTK_INT *hoffset_global /* hdim */);

CTK_INT Hyperslab_LocalMappingByPhys (
CCTK_POINTER_TO_CONST GH,
CCTK_INT vindex,
CCTK_INT hdim,
CCTK_STRING coord_system_name,
const CCTK_INT *direction /* vdim*hdim */,
const CCTK_REAL *origin /* vdim */,
const CCTK_REAL *extent /* hdim */,
const CCTK_INT *downsample /* hdim */,
CCTK_INT table_handle,
CCTK_FPOINTER conversion_fn,
CCTK_INT *hsize_local, /* hdim */
CCTK_INT *hsize_global, /* hdim */
CCTK_INT *hoffset_global /* hdim */);

Function arguments:

• CCTK POINTER TO CONST GH
The reference to the CCTK grid hierarchy.

In a C implementation, this should be a pointer of type const cGH *.

• CCTK INT vindex
In order to compute a hyperslab mapping, a CCTK grid variable must be given by this argument
which will be used as a template in the following hyperslab get/put operation to denote the input
arrays’ domain decomposition (dimensionality and distribution over processors). The domain de-
composition of all input CCTK variables given by the vindex, vindices arguments in subsequent
calls to Hyperslab GetXXX()/Hyperslab PutXXX() must match the one of the template variable
vindex.

• CCTK INT hdim
The dimension of the hyperslab to get/put (0 < hdim <= vdim).

• const CCTK INT *direction
const CCTK INT *origin
const CCTK INT *extent
const CCTK INT *downsample
--------------------------
const CCTK CHAR *coord system name
const CCTK INT *direction
const CCTK REAL *origin
const CCTK REAL *extent
const CCTK INT *downsample
Arguments describing the actual mapping of the hyperslab to get/put.

The hyperslab location is identified by its origin (lower left corner), the direction vectors starting
from the origin and spanning the hyperslab in the N -dimensional space, and its extents (size of the
hyperslab in each direction).

There are hdim direction vectors (one for each hyperslab axis) with vdim elements. The direc-
tion vectors are given in grid index points and must be linearly independent. The direction
argument must be passed as an array direction[vdim index + hdim index*vdim] (vdim is the
fastest changing dimension).

The origin and extent can be given in either physical coordinates or grid points – for the first case
a coordinate system needs to be given to do the mapping onto the underlying grid. For the second
case, integer extents can be given as negative values meaning that the hyperslab mapping should
be defined with the maximum possible extents (ie. the size of the underlying grid).

3



The downsampling parameter denotes the downsampling factors for the hyperslab to be extracted/distributed.
They are given in terms of grid points in each hyperslab direction. The downsampling parameter
is optional – if NULL is passed here, no downsampling will be applied.

• CCTK INT table handle
A key/value table can be passed in via its handle to provide additional information to the hyperslab
get/put routines about the hyperslab mapping. For example, there could be a tolerance parameter
for hyperslabs which are not rectangular to the underlying grid. For grid points which offset from
the direction vectors, the tolerance would then specify a (plus/minus) offset for the directions saying
which points should still be included in the hyperslab space.

Another example could be whether to do interpolation between grid points or not.

Passing a table handle is optional, an invalid (negative) table handle denotes no additional table
information.

• CCTK FPOINTER conversion fn
Reference to a user-defined datatype conversion function.

Users can request a type conversion between input and output data during a hyperslab get/put
operation. A hyperslab API implementation may provide a set of predefined data type conversion
routines for this purpose. In addition to this feature, users can also provide their own data type
conversion function and pass a reference to it in the conversion fn argument.

For a C implementation, such a user-supplied conversion function should be declared according to
the following typedef:

typedef CCTK_INT (*t_hslabConversionFn) (CCTK_INT nelems,
CCTK_INT src_stride,
CCTK_INT dst_stride,
CCTK_INT src_type,
CCTK_INT dst_type,
CCTK_POINTER_TO_CONST src,
CCTK_POINTER dst);

A data type conversion function gets passed the number of elements to convert (nelems), the
strides between adjacent elements in the source and destination arrays (src stride, dst stride),
the source and destination CCTK datatypes (src type, dst type), a pointer to the data to convert
(src), and a pointer to the conversion target buffer (dst). The routine should return the number
of elements converted (nelems) for success.

If a user-supplied function is given (conversion fn is not NULL), subsequent hyperslab get/put
calls will use for data type conversions. Otherwise the hyperslab get/put calls should fall back to
using an appropriate predefined data conversion function (if any exists).

• CCTK INT *hsize
CCTK INT *hsize local
Reference to a size array with hdim elements to be set by the Hyperslab XXXMappingByXXX()
routines.

The resulting size of the hyperslab to be extracted is set according to the hyperslab extents and
downsampling parameters chosen. With this information, one can compute the overall size of
the hyperslab, allocate memory for it and pass it as a user-provided hyperslab data buffer into
subsequent calls to Hyperslab GetXXX().

• CCTK INT *hsize global
Reference to a size array with hdim elements to be set by the Hyperslab LocalMappingBy*()
routine.

This array holds the sizes of the corresponding global hyperslab. It is set according to the local
hyperslab extents and downsampling parameters chosen and locates the local hyperslab in the global
grid.

A value of NULL can be passed for hsize global if no information about the global hyperslab size
is needed.

4



• CCTK INT *hoffset global
Reference to an offset array with hdim elements to be set by the Hyperslab LocalMappingBy*()
routine.

This array holds the offsets of the local hyperslab into the corresponding global hyperslab. It is
set according to the local hyperslab extents and downsampling parameters chosen and locates the
local hyperslab in the global grid.

A value of NULL can be passed for hoffset global if no information about a hyperslab offsets is
needed.

Return codes (according to the Cactus Coding Conventions):

• 0 for success

• negative for some error condition (to be defined by an actual implementation of the Hyperslab *MappingBy*()
routines)

2.2 Extracting/distributing a hyperslab

Each set of hyperslab get/put routines has two functions: one which operates on a single hyperslab, and
another which gets/puts hyperslabs for a list of variables. Depending on the actual hyperslab implementa-
tion it might be more efficient to operate on a list of grid variables using Hyperslab GetList()/Hyperslab PutList()
rather than doing sequential calls to Hyperslab Get()/Hyperslab Put() with individual grid variables.

CCTK_INT Hyperslab_Get (CCTK_POINTER_TO_CONST GH,
CCTK_INT mapping_handle,
CCTK_INT proc,
const CCTK_INT vindex,
const CCTK_INT timelevel,
const CCTK_INT hdatatype,
void *hdata);

CCTK_INT Hyperslab_GetList (CCTK_POINTER_TO_CONST GH,
CCTK_INT mapping_handle,
CCTK_INT num_arrays,
const CCTK_INT *procs /* num_arrays */,
const CCTK_INT *vindices /* num_arrays */,
const CCTK_INT *timelevels /* num_arrays */,
const CCTK_INT *hdatatypes /* num_arrays */,
void *const *hdata /* num_arrays */,
CCTK_INT *retvals /* num_arrays */);

CCTK_INT Hyperslab_Put (CCTK_POINTER_TO_CONST GH,
CCTK_INT mapping_handle,
CCTK_INT proc,
CCTK_INT vindex,
CCTK_INT timelevel,
CCTK_INT hdatatype,
CCTK_POINTER_TO_CONST hdata);

CCTK_INT Hyperslab_PutList (CCTK_POINTER_TO_CONST GH,
CCTK_INT mapping_handle,
CCTK_INT num_arrays,
const CCTK_INT *procs /* num_arrays */,
const CCTK_INT *vindices /* num_arrays */,
const CCTK_INT *timelevels /* num_arrays */,
const CCTK_INT *hdatatypes /* num_arrays */,
const CCTK_POINTER_TO_CONST hdata /* num_arrays */,
CCTK_INT *retvals /* num_arrays */);

5



Function arguments:

• CCTK POINTER TO CONST GH
The reference to the CCTK grid hierarchy.

In a C implementation, this should be a pointer of type const cGH *.

• CCTK INT mapping handle
The handle for the hyperslab mapping as returned by a previous call to one of the hyperslab mapping
routines.

• CCTK INT num arrays
The total number of input arrays to get/put a hyperslab from/to.

This must be a positive integer and match the number of array elements in the arguments following.

• CCTK INT proc
const CCTK INT *procs
The (list of) processor(s) which will receive/provide the hyperslab data.

For Hyperslab GetXXX(), there may be either exactly one processor providing the hyperslab data
(in this case, its processor ID must be given in proc), or all all processors will get the extracted
hyperslab data (an invalid (i.e., negative) processor ID should be given as proc, or procs is passed
as a NULL pointer). For Hyperslab PutXXX(), there may only be one processor providing the
hyperslab data to be distributed to all others.

• CCTK INT vindex
const CCTK INT *vindices
The (list of) CCTK variable(s) to get/put a hyperslab from/to.

The grid variables are given by their CCTK indices; their domain decomposition must match the
template variable as given in a previous hyperslab mapping routine call.

• CCTK INT timelevel
const CCTK INT *timelevels
The (list of) timelevel(s) for the grid variable(s) to get/put a hyperslab from/to.

Each element in the timelevels array matches its entry in the vindices array argument. If
timelevels is passed as a NULL pointer then all timelevels for the list operation will default to 0
(denoting the current timelevel).

• CCTK INT hdatatype
const CCTK INT *hdatatypes
The (list of) CCTK data type(s) of the hyperslab data.

The hyperslab data to be extracted/distributed may be given in a data type which is different to
its corresponding grid variable. For this case, the requested hyperslab data type must be specified
explicitely. The hyperslab routines will then do the neccessary data type conversions either by using
a user-supplied data type conversion function (as specified in the conversion fn argument to the
hyperslab mapping routines), or by choosing a built-in predefined data type conversion function.
convert the input array datatypes to some output array datatype.

A negative value for hdatatype or type or passing a NULL pointer for the hdatatypes argument
indicates that both the grid variable and its corresponding hyperslab have the same CCTK data
type so that no type conversion is necessary.

• (const) void *hdata
(const) void *const *hdata
The (list of) user-supplied buffer(s) to store the extracted hyperslabs for each input variable (for a
get operation) or to read the hyperslab data from (for a put operation).

This argument is only evaluated on processors which are part of the hyperslab mapping.

6



• CCTK INT *retvals
User-provided array to store the status of each individual get/put operation in a Hyperslab XXXList()
call.

Each element in the retvals array will contain the status of the corresponding hyperslab operation
on grid variable i. If retvals is passed as a NULL pointer then no status codes for individual
hyperslab operations will be passed back to the caller.

Return Codes for these routines (according to the Cactus Code conventions:

• 0 for success

• negative for some error condition (to be defined by an actual implementation of the Hyperslab GetXXX()/Hyperslab PutXXX()
routines)

3 Implementation Details

The current version of thorn PUGHSlab implements only parts of the CCTK hyperslab API as described
in section 2:

1. the definition of local/global hyperslabs based on grid indicices
Currently, the only additional hyperslab mapping information which can be passed through a
key/value table is a CCKT INT option with the key with ghostzones. If the value of this key
is non-zero PUGHSlab will not strip outer boundary ghostzones for periodic boundary conditions as
implemented by PUGH.

PUGHSlab provides a set of predefined built-in functions for the following classes of data type
conversions:

• any CCTK INT data type into any other CCTK INT

• any CCTK REAL data type into any other CCTK REAL

• any CCTK COMPLEX data type into any other CCTK COMPLEX

2. local/global hyperslab extractions
Global hyperslab get requests will strip off all processor-boundary ghostzones from the returned
hyperslab data.

Local hyperslabs will always include processor-boundary ghostzones. The hsize local, hoffset local
information returned by the hyperslab mapping routines should be used to locate the locate hy-
perslab within the global grid (e.g. during a recombination of several local hyperslabs into a single
global one).

7


	Introduction
	CCTK Hyperslab API Specification
	Defining a hyperslab mapping
	Extracting/distributing a hyperslab

	Implementation Details

