
PUGHInterp

Paul Walker, Thomas Radke, Erik Schnetter

Date: 2004/06/20 12:31:17

Abstract

Thorn PUGHInterp implements the Cactus interpolation API CCTK InterpGridArrays() for the
interpolation of CCTK grid arrays at arbitrary points.

1 Introduction

Thorn PUGHInterp provides an implementation of the Cactus interpolation API specification for the
interpolation of CCTK grid arrays at arbitrary points, CCTK InterpGridArrays().

This function interpolates a list of CCTK grid arrays (in a multiprocessor run these are generally
distributed over processors) on a list of interpolation points. The grid topology and coordinates are
implicitly specified via a Cactus coordinate system. The interpolation points may be anywhere in the
global Cactus grid. In a multiprocessor run they may vary from processor to processor; each processor
will get whatever interpolated data it asks for.

The routine CCTK InterpGridArrays() does not do the actual interpolation itself but rather takes
care of whatever interprocessor communication may be necessary, and – for each processor’s local patch
of the domain-decomposed grid arrays – calls CCTK InterpLocalUniform() to invoke an external local
interpolation operator (as identified by an interpolation handle). It is advantageous to interpolate a list
of grid arrays at once (for the same list of interpolation points) rather than calling CCTK InterpGrid-
Arrays() several times with a single grid array. This way note only can PUGHInterp’s implementation of
CCTK InterpGridArrays() aggregate communications for multiple grid arrays into one (resulting in less
communications overhead) but also CCTK InterpLocalUniform() may compute interpolation coefficients
once and reuse them for all grid arrays.

Please refer to the Cactus UsersGuide for a complete function description of CCTK InterpGrid-
Arrays() and CCTK InterpLocalUniform().

2 PUGHInterp’s Implementation of CCTK InterpGridArrays()

If thorn PUGHInterp was activated in the ActiveThorns list of a parameter file for a Cactus run, it
will overload at startup the flesh-provided dummy function for CCTK InterpGridArrays() with its own
routine. This routine will then be invoked in subsequent calls to CCTK InterpGridArrays().

PUGHInterp’s routine for the interpolation of grid arrays provides exactly the same semantics as
CCTK InterpGridArrays()which is thoroughly described in the Function Reference chapter of the Cactus
UsersGuide. In the following, only user-relevant details about its implementation, such as specific error
codes and the evaluation of parameter options table entries, are explained.

2.1 Implementation Notes

At first, CCTK InterpGridArrays() checks its function arguments for invalid values passed by the
caller. In case of an error, the routine will issue an error message and return with an error code of
either UTIL ERROR BAD HANDLE for an invalid coordinate system and/or parameter options table, or
UTIL ERROR BAD INPUT otherwise. Currently there is the restriction that only CCTK VARIABLE REAL is
accepted as the CCTK data type for the interpolation points coordinates.

1



Then the parameter options table is parsed and evaluated for additional information about the inter-
polation call (see section 2.2 for details).

In the single-processor case, CCTK InterpGridArrays() would now invoke the local interpolation
operator (as specified by its handle) by a call to CCTK InterpLocalUniform() to perform the actual
interpolation. The return code from this call is then also passed back to the user.

For the multi-processor case, PUGHInterp does a query call to the local interpolator first to find
out whether it can deal with the number of interprocessor ghostzones available. For that purpose it
sets up an array of two interpolation points which denote the extremes of the physical coordinates on a
processor: the lower-left and upper-right point of the processor-local grid’s bounding box1. The query
gets passed the same user-supplied function arguments as for the real interpolation call, apart from the
interpolation points coordinates (which now describe a processor’s physical bounding box coordinates)
and the output array pointers (which are all set to NULL in order to indicate that this is a query call
only). A return code of CCTK_ERROR_INTERP_POINT_OUTSIDE from CCTK_InterpLocalUniform() for this
query call (meaning the local interpolator potentially requires values from grid points which are outside
of the available processor-local patch of the global grid) causes CCTK InterpGridArrays() to return
immediately with a CCTK_ERROR_INTERP_GHOST_SIZE_TOO_SMALL error code on all processors.

Otherwise the CCTK InterpGridArrays() routine will continue and map the user-supplied interpo-
lation points onto the processors which own these points. In a subsequent global communication all
processors receive ”their” interpolation points coordinates and call CCTK InterpLocalUniform() with
those. The interpolation results are then sent back to the processors which originally requested the
interpolation points.

Like the PUGH driver thorn, PUGHInterp uses MPI for the necessary interprocessor communication.
Note that the MPI Alltoall()/MPI Alltoallv() calls for the distribution of interpolation points coor-
dinates to their owning processors and the back transfer of the interpolation results to the requesting
processors are collective communication operations. So in the multi-processor case you must call CCTK -
InterpGridArrays() in parallel on each processor (even if a processor doesn’t request any points to
interpolate at), otherwise the program will run into a deadlock.

2.2 Passing Additional Information via the Parameter Table

One of the function arguments to CCTK InterpGridArrays() is an integer handle which refers to a
key/value options table. Such a table can be used to pass additional information (such as the interpolation
order) to the interpolation routines (i.e. to both CCTK InterpGridArrays() and the local interpolator
as invoked via CCTK InterpLocalUniform()). The table may also be modified by these routines, eg. to
exchange internal information between the local and global interpolator, and/or to pass back arbitrary
information to the user.

The only table option currently evaluated by PUGHInterp’s implementation of CCTK InterpGrid-
Arrays() is:

CCTK_INT input_array_time_levels[N_input_arrays];

which lets you choose the timelevels for the individual grid arrays to interpolate (in the range [0, N time levels-
of var i−1]). If no such table option is given, then the current timelevel (0) will be taken as the default.

The following table options are meant for the user to specify how the local interpolator should deal
with interpolation points near grid boundaries:

CCTK_INT N_boundary_points_to_omit[2 * N_dims];
CCTK_REAL boundary_off_centering_tolerance[2 * N_dims];
CCTK_REAL boundary_extrapolation_tolerance[2 * N_dims];

In the multi-processor case, CCTK InterpGridArrays() will modify these arrays in a user-supplied options
table in order to specify the handling of interpolation points near interprocessor boundaries (ghostzones)
for the local interpolator; corresponding elements in the options arrays are set to zero for all ghostzone

1 Note that because the query is done with extreme interpolation points coordinates, the interpolation call may fail even
if all the user-supplied interpolation points are well within each processor’s local patch. The reason for this implementation
behaviour is that we safely want to catch all errors caused by a too small ghostzone size.

2



faces, i.e. no points should be omitted, and no off-centering and extrapolation is allowed at those bound-
aries. Array elements for physical grid boundaries are left unchanged by CCTK InterpGridArrays().

If any of the above three boundary handling table options is missing in the user-supplied table, CCTK -
InterpGridArrays() will create and add it to the table with appropriate defaults. For the default values,
as well as a comprehensive discussion of grid boundary handling options, please refer to documentation
of the thorn(s) providing local interpolator(s) (eg. thorn LocalInterp in the Cactus ThornGuide).

At present, the table option boundary_extrapolation_tolerance is not implemented. Instead, if
any point cannot be mapped onto a processor (i.e. the point is outside the global grid), a level-1 warning
is printed to stdout by default, and the error code CCTK_ERROR_INTERP_POINT_OUTSIDE is returned.
The warning will not be printed if the parameter table contains an entry (of any type) with the key
"suppress_warnings".

The local interpolation status will be stored in the user-supplied parameter table (if given) as an
integer scalar value with the option key "local_interpolator_status" (see section 2.3 for details).

The table options

CCTK_POINTER per_point_status;
CCTK_INT error_point_status;

are used internally by CCTK InterpGridArrays() to pass information about per-point status codes be-
tween the global and the local interpolator (again see section 2.3 for details).

2.3 CCTK InterpGridArrays() Return Codes

The return code from CCTK InterpGridArrays()2is determined as follows:

• If any of the arguments are invalid (e.g. N_dims < 0), the return code is UTIL_ERROR_BAD_INPUT.

• If any errors are encountered when processing the parameter table, the return code is the appropriate
UTIL_ERROR_TABLE_* error code.

• If the query call determines that the number of ghost zones in the grid is too small for the local
interpolator, the return code is CCTK_ERROR_INTERP_POINT_OUTSIDE.

• Otherwise, the return code from CCTK InterpGridArrays() is the minimum over all processors of
the return code from the local interpolation on that processor.

If the local interpolator supports per-point status returns and the user supplies an interpolator pa-
rameter table, then in addition to this global interpolation return code, CCTK InterpGridArrays() also
returns a “local” status code which describes the outcome of the local interpolation for all the interpola-
tion points which originated on this processor:

CCTK_INT local_interpolator_status;

This gives the minimum over all the interpolation points originating on this processor, of the CCTK_InterpLocalUniform()
return codes for those points. (It doesn’t matter on which processor(s) the points were actually inter-
polated – CCTK InterpGridArrays() takes care of gathering all the status information back to the
originating processors.)

3 Comments

For more information on how to invoke interpolation operators please refer to the flesh documentation.

2In C the return code is the CCTK InterpGridArrays() function result; in Fortran it’s returned through the first (status)
argument.

3


	Introduction
	PUGHInterp's Implementation of CCTK_InterpGridArrays()
	Implementation Notes
	Passing Additional Information via the Parameter Table
	CCTK_InterpGridArrays() Return Codes

	Comments

