
EllBase

Gerd Lanfermann

Date: 2002/08/18 20:10:28

Abstract

Infrastructure for standard elliptic solvers

1 Introduction

Following a brief introduction to the elliptic solver interfaces provided by EllBase, we explain how to
add a new class of elliptic equations and how to implement a particular solver for any class. We do not
discuss the individual elliptic solvers here since these are documented in their own thorns.

1.1 Purpose of Thorn

Thorn EllBase provides the basic functionality for

• registering a class of elliptic equations

• register a solver for any particular class

The solvers are called by the user through a unique interface, which calls the required elliptic solver
for a class using the name under which the solver routine is registered.

EllBase itself defines the elliptic classes

1. flat: Ell LinFlat
solves a linear elliptic equation in flat space: ∇φ+Mφ+N = 0

2. metric: Ell LinMetric
solves a linear elliptic equation for a given metric: ∇gφ+Mφ+N = 0

3. conformal metric: Ell LinConfMetric
solves a linear elliptic equation for a given metric and a conformal factor: ∇cgφ+Mφ+N = 0

4. generic: solves a linear elliptic equation by passing the stencil functions. There is support for a
maximum of 27 stencil functions (33). This is not implemented, yet.

2 Technical Specification

• Implements: ellbase

• Inherits from: grid

• Tested with thorns:
CactusElliptic/EllTest,
CactusWave/IDScalarWaveElliptic

1

3 ToDo

• Add more standard equation classes.

• The method for passing boundary conditions into the elliptic solvers has not fully consolidated. We
have some good ideas on what the interface should look like, but the implementation will take some
time. If you are worried about BCs, please contact me.

4 Solving an elliptic equation

EllBase provides a calling interface for each of the elliptic classes implemented. As a user you must
provide all information needed for a particular elliptic class. In general this will include

• the gridfunction(s) to solve for

• the coefficient matrix or source terms

• information on termination tolerances

• the name of the solver to be used

Motivation: At a later stage you might want to compile with a different solver for this elliptic class:
just change the name of the solver in your elliptic interface call. If somebody improves a solver you have
been using, there is no need for you to change any code on your side: the interface will hide all of that.
Another advantage is that your code will compile and run, even though certain solvers are not compiled
in. In this case, you will have to do some return value checking to offer alternatives.

4.1 Ell LinFlat

To call this interface from Fortran:

call Ell_LinFlatSolver(ierr, cctkGH, phi_gfi, M_gfi, N_gfi,
. AbsTol, RelTol, "solvername")

To call this interface from C:

ierr = Ell_LinFlatSolver(GH, phi_gfi, M_gfi, N_gfi,
AbsTol, RelTol, "solvername");

Argument List:

• ierr: return value: “0” for success.

• cctkGH: the Fortran “pointer” to the grid function hierachy.

• GH: the C pointer to the grid hierarchy, type: pGH *GH.

• phi gif: the integer index of the grid function to solve for.

• M gfi: the integer index of the grid function which holds M .

• N gif: the integer index of the grid function which holds N .

• AbsTol: array of size 3: holding absolute tolerance values for the L1, L2, L∞ norm. Check if
the solver side supports these norms. The interface side does not guarantee that these norms are
actually implemenented by a solver. See the section on norms: 6.

• RelTol: array of size 3: holding relative tolerance factors for the L1, L2, L∞. Check if the solver
side supports these norms. The interface side does not guarantee that these norms are actually
implemenented by a solver. See the section on Norms: 6.

2

• "solvername": the name of a solver, which is registered for a particular equation class. How
does one find out the names? Either check the documentation of the elliptic solvers or check for
registration infomation outputted by a cactus at runtime.

Example use in Fortran, as used in the WaveToy arrangement: CactusWave/IDScalarWave:

c We derive the grid function indicies from the names of the
c grid functions:

call CCTK_VarIndex (Mcoeff_gfi, "idscalarwaveelliptic::Mcoeff")
call CCTK_VarIndex (Ncoeff_gfi, "idscalarwaveelliptic::Ncoeff")
call CCTK_VarIndex (phi_gfi, "wavetoy::phi")

c Load the Absolute Tolerance Arrays
AbsTol(1)=1.0d-5
AbsTol(2)=1.0d-5
AbsTol(3)=1.0d-5

c Load the Relative Tolerance Arrays, they are not
c used here: -1

RelTol(1)=-1
RelTol(2)=-1
RelTol(3)=-1

c Call to elliptic solver, named ‘‘sor’’
call Ell_LinFlatSolver(ierr, cctkGH,
. phi_gfi, Mcoeff_gfi, Ncoeff_gfi, AbsTol, RelTol,
. "sor")

c Do some error checking, a call to another solver
c could be coded here

if (ierr.ne.0) then
call CCTK_WARN(0,"Requested solver not found / solve failed");

endif

4.2 Ell LinMetric

To call this interface from Fortran:

call Ell_LinMetricSolver(ierr, cctkGH, Metric_gfi,
. phi_gfi, M_gfi, N_gfi,
. AbsTol, RelTol, "solvername")

To call this interface from C:

ierr = Ell_LinMetricSolver(GH, Metric_gfi,
phi_gfi, M_gfi, N_gfi,

AbsTol, RelTol, "solvername");

Argument List:

• ierr: return value: “0” success

• cctkGH: the Fortran “pointer” to the grid function hierachy.

• GH: the C pointer to the grid hierarchy, type: pGH *GH

• Metric gfi: array of size 6, containing the index components of the metric g: g11, g12, g13, g22,
g23, g33. The order is important.

3

• phi gif: the integer index of the grid function so solver for.

• M gfi: the integer index of the grid function which holds M .

• N gif: the integer index of the grid function which holds N

• AbsTol: array of size 3: holding absolute tolerance values for the L1, L2, L∞ Norm. Check, if
the solver side supports these norms.The interface side does not guarantee that these norms are
actually implemenented by a solver. See the section on Norms: 6.

• RelTol: array of size 3: holding relative tolerance factors for the L1, L2, L∞. Check, if the solver
side supports these norms. The interface side does not guarantee that these norms are actually
implemenented by a solver. See the section on Norms: 6.

• "solvername": the name of a solver, which is registered for a particular equation class. How to
find out the names ? Either check the documentation of the elliptic solvers or check for registration
infomation outputted by a cactus at runtime.

4.3 Ell LinConfMetric

To call this interface from Fortran:

call Ell_LinMetricSolver(ierr, cctkGH, MetricPsi_gfi,
. phi_gfi, M_gfi, N_gfi,
. AbsTol, RelTol, "solvername")

To call this interface from C:

ierr = Ell_LinMetricSolver(GH, MetricPsi_gfi,
phi_gfi, M_gfi, N_gfi,

AbsTol, RelTol, "solvername");

Argument List:

• ierr: return value: “0” success

• cctkGH: the Fortran “pointer” to the grid function hierachy.

• GH: the C pointer to the grid hierarchy, type: pGH *GH

• MetricPsi gfi: array of size 7, containing the grid function index of the metric components and
the grid function index of the conformal factor Ψ: g11, g12, g13, g22, g23, g33, Ψ. The order is
important.

• phi gif: the integer index of the grid function so solver for.

• M gfi: the integer index of the grid function which holds M .

• N gif: the integer index of the grid function which holds N

• AbsTol: array of size 3: holding absolute tolerance values for the L1, L2, L∞ Norm. Check, if
the solver side supports these norms.The interface side does not guarantee that these norms are
actually implemenented by a solver. See the section on Norms: 6.

• RelTol: array of size 3: holding relative tolerance factors for the L1, L2, L∞. Check, if the solver
side supports these norms. The interface side does not guarantee that these norms are actually
implemenented by a solver. See the section on Norms: 6.

• "solvername": the name of a solver, which is registered for a particular equation class. How to
find out the names ? Either check the documentation of the elliptic solvers or check for registration
infomation outputted by a cactus at runtime.

4

5 Extending the elliptic solver class

EllBase by itself does not provide any elliptic solving capabilities. It merely provides the registration
structure and calling interface.

The idea of a unified calling interface can be motivated as follows: assume you a have elliptic problem
which conforms to one of the elliptic classes defined in EllBase.

5.1 Registration Mechanism

Before a user can successfully apply a elliptic solver to one of his problems, two things need to be done
by the author who programs the solver.

• Register a class of elliptic equations Depending on the elliptic problem This provides the
unique calling, the solving routines needs to have specific input data. The interface, which is called
by the user, has to reflect these arguments. EllBase already offers several of these interfaces, but if
you need to have a new one, you can provide your own.

• Register a solver for a particular elliptic equation class Once a class of elliptic equations
has been made available as described above, the author can now register solvers for that particular
class. Later a user will access the solver calling the interface with the arguments needed for the
elliptic class and a name, under which a solver for this elliptic problem has been registered.

The registration process is part of the authors thorn, not part of EllBase. There is no need to change
code in EllBase. Usually, a author of solver routines will register the routines that register an elliptic
equation class and/or an elliptic solver in the STARTUP timebin. If a author registers both, class and
solver, you must make sure, that the elliptic class is registered before the solver registration takes place.

5.2 EllBase Programming Guide

Here we give a step by step guide on how to implement an new elliptic solver class, its interface and
provide a solver for this class. Since some of the functionality needed in the registration code can only
be achieved in C, a basic knowledge of C is helpful.

• Assumption:

– The elliptic equation class will be called “SimpleEllClass”: it will be flat space solver, that
only takes the coefficient matrix M : Note that this solver class is already provided by EllBase.

– The name of the demonstration thorn will be “ThornFastSOR”. Since I will only demonstrate
the registration principle and calling structure, I leave it to the interested reader to write a
really fast SOR solver.

– The solver for this elliptic equation will be called “FastSOR solver” and will be written in
Fortran. Since Fortran cannot be called directly by the registration mechanism, we need to
have C wrapper function “FastSOR wrapper”.

• Elliptic class declaration: SimpleEllThorn/src/SimpleEll Class.c

• Elliptic solver interface: src/SimpleEll Interface.c

#include ‘‘cctk.h’’
#include ‘‘cctk_Parameters.h’’

#include ‘‘cctk_FortranString.h’’
#include ‘‘StoreNamedData.h’’

5

static pNamedData *SimpleEllSolverDB;

void Ell_SimpleEllSolverRegistry(void (*solver_func), const char *solver_name)
{
StoreNamedData(&SimpleEllSolverDB,solver_name,(void*)solver_func);

}

The routine above registers the solver (or better the function pointer of the solver routine “*solve func”)
for the equation class SimpleEllClass by the name solver name in the database SimpleEllSolverDB.
This database is declared in statement static pNamedData....

Next, we write our interface in the same file ./SimpleEll Interface.c:

void Ell_SimpleEllSolver(cGH *GH, int *FieldIndex, int *MIndex,
CCTK_REAL *AbsTol, CCTK_REAL *RelTol,

const char *solver_name) {

/* prototype for the equation class wrapper:
grid hierarchy(*GH), ID-number of field to solve for (*FieldIndex),
two arrays of size three holding convergence information (*AbsTol, *RelTol)

*/
void (*fn)(cGH *GH, int *FieldIndex, int *AbsTol, int *RelTol);

/* derive the function name from the requested name and hope it is there */
fn = (void(*)) GetNamedData(LinConfMetricSolverDB,solver_name);
if (!fn) CCTK_WARN(0,’’Ell_SimpleEllSolver: Cannot find solver! ‘‘);

/* Now that we have the function pointer to our solver, call the
solver and pass through all the necessary arguments */

fn(GH, FieldIndex, MIndex, AbsTol, RelTol);
}

The interface Ell SimpleEllSolver is called from the user side. It receives a pointer to the
grid hierarchy, the ID-number of the field to solver for, two arrays which the used upload with
convergence test info, and finally, the name of the solver the user want to employ *solver name.
Note: all these quantities are referenced by pointers, hence the “*”.

Within the interface, the solver name is used to get the pointer to function which was registered
under this name. Once the function is known, it called with all the arguments passed to the
interface.

To allow calls from Fortran, the interface in C needs to be “wrapped”. (This wrapping is different
from the one necessary to make to actual solver accessible by the elliptic registry).

/* Fortran wrapper for the routine Ell_SimpleEllSolver */
void CCTK_FCALL CCTK_FNAME(Ell_SimpelEllSolver)

(cGH *GH, int *FieldIndex, int *MIndex,
int *AbsTol, int *RelTol, ONE_FORTSTRING_ARG) {

ONE_FORTSTRING_CREATE(solver_name);

/* Call the interface */
Ell_SimpleEllSolver(GH, FieldIndex, MIndex, AbsTol, RelTol, solver_name);
free(solver_name);

}

• Elliptic solver:./src/FastSOR solver.F
Here we show the first lines of the Fortran code for the solver:

6

subroutine FastSOR_solver(_CCTK_ARGUMENTS,
. Mlinear_lsh,Mlinear,
. var,
. abstol,reltol)

implicit none

_DECLARE_CCTK_ARGUMENTS
DECLARE_CCTK_PARAMETERS
INTEGER CCTK_Equals

INTEGER Mlinear_lsh(3)
CCTK_REAL Mlinear(Mlinear_lsh(1),Mlinear_lsh(2),Mlinear_lsh(3))
CCTK_REAL var(cctk_lsh(1),cctk_lsh(2),cctk_lsh(3))

INTEGER Mlinear_storage

c We have no storage for M if they are of size one in each direction
if ((Mlinear_lsh(1).eq.1) .and.

. (Mlinear_lsh(2).eq.1) .and.

. (Mlinear_lsh(3).eq.1)) then
Mlinear_storage=0

else
Mlinear_storage=1

endif

This Fortran solver receives the following arguments: the “typical” CCTK ARGUMENTS: CCTK ARGUMENTS,
the size of the coefficient matrix: Mlinear lsh, the coefficient matrix Mlinear, the variable to solve
for: var, and the two arrays with convergence information.

In the declaration section, we declare: the cctk arguments, the Mlinear size array, the coefficient
matrix, by the 3-dim. size array, the variable to solve for. Why do we pass the size of Mlinear
explicitly and do not use the cctk lsh (processor local shape of a grid function) as we did for var ?
The reason is the following: while we can expect the storage of var to be on for the solve, there is no
reason (in a more general elliptic case) to assume, that the coefficient matrix has storage allocated,
perhaps it is not needed at all! In this case, we have to protect ourself against referencing empty
arrays. For this reason, we also employ the flag Mlinear storage.

• Elliptic solver wrapper:./src/FastSOR wrapper.c
The Fortran solver can not be used within the elliptic registry directly. Instead the Fortran code is
called through a wrapper:

void FastSOR_wrapper(cGH *GH, int *FieldIndex, int *MIndex,
int *AbsTol,int *RelTol) {

CCTK_REAL *Mlinear=NULL, *var=NULL;
int Mlinear_lsh[3];
int i;

var = (CCTK_REAL*) CCTK_VarDataPtrI(GH,0,*FieldIndex);

if (*MIndex>0) Mlinear = (CCTK_REAL*) CCTK_VarDataPtrI(GH,0,*MIndex);

if (GH->cctk_dim>3)

7

CCTK_WARN(0,’’This elliptic solver implementation does not do dimension>3!’’);

for (i=0;i<GH->cctk_dim;i++) {
if((*MIndex<0)) Mlinear_lsh[i]=1;
else Mlinear_lsh[i]=GH->cctk_lsh[i];

}

/* call the fortran routine */
CCTK_FNAME(SimpleEll_Solver)(_PASS_CCTK_C2F(GH),

Mlinear_lsh, Mlinear, var,
AbsTol, RelTol);
}

The wrapper FastSOR wrapper takes these arguments: the indices of the field to solve for (FieldIndex)
and the coefficient matrix (MIndex), the two arrays containing convergence information (AbsTol,
RelTol). In the body of the program we provide two CCTK REAL pointers to the data section of
the field to solver (var, Mlinear) by means of Get VarDataPtrI. For Mlinear, we only do this, if
the index is non-negative. A negative index is a signal by the user that the coefficient matrix has
no storage allocated.(For more general elliptic equation cases, e.g. no source terms.) To make this
information of a possibly empty matrix available to Fortran, we load a 3-dim. and pass this array
through to Fortran. See discussion above.

• Elliptic solver startup: ./src/Startup.c
The routine below in Startup.c performs the registration of our solver wrapper FastSOR wrapper
under the name “fastsor” for the elliptic class “Ell SimpleEll”. We do not register with the solver
interface Ell SimpleEllSolver directly, but with the class. In Startup,c we have:

#include ‘‘cctk.h’’
#include ‘‘cctk_Parameters.h’’

void FastSOR_register(cGH *GH) {

/* protoype of the solver wrapper: */
void FastSOR_wrapper(cGH *GH, int *FieldIndex, int *MIndex,

int *AbsTol, int*RelTol);

Ell_RegisterSolver(FastSOR_wrapper,’’fastsor’’,’’Ell_SimpleEll’’);
}

Note that more solver registration code could be put here (registration for other classes, etc.)

• Elliptic solver scheduling: schedule.ccl We schedule the registration of the fast SOR solver
at CCTK BASE, by this time, the elliptic class Ell SimpleEll has already been registered.

schedule FastSOR_register at CCTK_INITIAL
{
LANG:C

} ‘‘Register the fast sor solver’’

6 Norms

8

	Introduction
	Purpose of Thorn

	Technical Specification
	ToDo
	Solving an elliptic equation
	Ell_LinFlat
	Ell_LinMetric
	Ell_LinConfMetric

	Extending the elliptic solver class
	Registration Mechanism
	EllBase Programming Guide

	Norms

