EvolSimple

David Rideout

Date: 2003/01/30 14:31:41

Abstract

This thorn illustrates a simple solver for the 3+1 equations, using the Cactus Einstein framework. It uses the "standard ADM" formulation of the evolution equations, and double leapfrog to implement the time integration. It assumes zero shift and no matter.

Physical System 1

The line element is

$$ds^2 = -\alpha^2 dt^2 + \gamma_{ij} dx^i dx^j, \tag{1}$$

where α is the lapse and γ_{ij} the 3-metric. Defining n to be the normal to the slice, we have the extrinsic curvature K_{ij} given by

$$K_{ij} = \frac{1}{2} \mathcal{L}_n \gamma_{ij} \tag{2}$$

where \mathcal{L} is the Lie derivative.

The ADM equations then evolve the spatial three metric γ_{ij} and the extrinsic curvature K_{ij} using

$$\frac{d}{dt}\gamma_{ij} = -2\alpha K_{ij},\tag{3}$$

$$\frac{d}{dt} \gamma_{ij} = -2\alpha K_{ij},$$

$$\frac{d}{dt} K_{ij} = -D_i D_j \alpha + \alpha \left(K K_{ij} - 2K_{ik} K^k_{j} \right),$$
(3)

with

$$\frac{d}{dt} = \partial_t. (5)$$

Here D_i is the covariant derivative associated with the three-dimensional metric γ_{ij} .

Using This Thorn $\mathbf{2}$

Set the parameter ADMBase::evolution_method to "simple".