
ADMMacros

Original code by Gabrielle Allen,
later enhancements by Denis Pollney

Date: 2004/11/21 12:55:34

Abstract

Provides macros for common relativity calculations, using the ADMBase variables.

1 Purpose

This thorn provides various macros which can be used to calculate quantities, such as the Christoffel
Symbol or Riemann Tensor components, using the basic variables of thorn ADMBase (and Static-
Conformal if required). The macros can be used in both Fortran and C code. The macros work
pointwise to calculate quantities at the grid point (i, j, k); it’s up to you to loop over all the grid points
where you want computations done. The macros are written in such a way that within any single loop,
quantities which have already been calculated are automagically reused as needed in later calculations.

1.1 Finite Differencing

By default, the macros use centered 2nd order finite differencing, with 3-point finite difference molecules.
That is, when finite differencing the the grid-point indices i± 1, j± 1, and k± 1 must also be valid, and
driver::ghost size must be set to at least 1.

Some of the macros also support centered 4th order finite differencing; This is selected with the parameter
spatial_order. This may be set to either 2 or 4; it defaults to 2. If it’s set to 4, then 5-point finite
difference molecules are used, so the grid-point indices i ± 2, j ± 2, and k ± 2 must also be valid, and
driver::ghost size must be set to at least 2. The only save way to be certain which macros support
4th order finite differencing is to check the source code; the macros which don’t support it simply hard-
code 2nd order finite differencing and ignore the spatial order parameter.

At present 4th order finite differencing is only supported for Fortran code. (That is, at present the
C versions of the macros all ignore the spatial order parameter.)

2 Using ADM Macros

Each macro described in Section 4 is implemented using three include files:

1

<MACRONAME> declare.h sets up the declarations for the internal macro variables. All the internal (hid-
den) variables have names beginning with the macro name. This file should be included in the
declarations section of your routine.

<MACRONAME> guts.h is the actual included source code which will calculate the quantities.

<MACRONAME> undefine.h resets the macros. This file must be #included at the end of every loop using
macros. Without this, a second loop using macros would assume that quantities have already been
calculated (and thus get wrong results).

The macros which compute derivatives also use the following variables; you should avoid using these in
your code, in either lower or upper case:

di2, dj2, dk2 /* only in C, not in Fortran */
dt, dx, dy, dz
idx, idy, idz
i2dx, i2dy, i2dz
i12dx, i12dy, i12dz
idxx, idxy, idxz, idyy, idyz, idzz
i12dxx, i12dyy, i12dzz
i36dxy, i36dxz, i36dyz

To use the macros, first find the name of the macro from the table in Section 4 and put the include files
in the correct place following the instructions above. Note that all ADMMacro include files are in the
directory CactusEinstein/ADMMacros/src/macro/, so you include the macros with lines such as

#include "CactusEinstein/ADMMacros/src/macro/<MACRONAME>_<TYPE>.h"

(Recall that Cactus uses a C-style preprocessor for Fortran as well as C/C++ code; you use the same
#includes for all these languages.)

Each variable that the macro calculates is listed in the table of Section 4. Note that these variable names
are themselves macros and are case sensitive. Always use the macro variables on the right hand
sides of equations, never redefine them yourself, since they may be used in later (hidden)
calculations.

2.1 Fortran

If you are using the macros inside a Fortran function then the i, j and k indices are used directly.

If you’re using (either directly or indirectly) any macro which computes derivatives, you also need to
#include two additional files:

ADM Spacing declare.h
This must be #included before any of the other <MACRONAME> declare.h files.

ADM Spacing.h
This must be #included after all of the other <MACRONAME> declare.h and before any of the
<MACRONAME> guts.h files.

The Fortran example below should make this clear(er).

2

2.2 C

If you are using the macros inside a C function then you must define the grid-function subscripting index
ijk, which can be found from i, j and k using the macro CCTK GFINDEX3D(cctkGH,i,j,k). Of course,
since ijk depends on i, j and k, you have to assign ijk its value inside the loop-over-grid-points loops.

You must also define the grid-function strides di, dj and dk to give the grid-function subscripting index
offsets of the grid points (i+1, j, k), (i, j+1, k), and (i, j, k+1) (respectively) relative to (i, j, k). That is,
you should define di = 1, dj = cctk lsh[0], and dk = cctk lsh[0]*cctk lsh[1]. Since these don’t
depend on i, j and k, they can be assigned values once outside the loop-over-grid-points loops.

The C example below should make this clear(er).

Note that you should assign all these variables their values before #includeing the <MACRONAME> guts.h
macro (it may do calculations which use these values).

3 Examples

3.1 Fortran

This example comes from thorn CactusEinstein/Maximal and uses the trK macro to calculate the trace
of the extrinsic curvature.

3

c Declarations for macros.
#include "CactusEinstein/ADMMacros/src/macro/TRK_declare.h"

c we’re not taking any derivatives here, but if we were,
c we would also need the following line:
#include "CactusEinstein/ADMMacros/src/macro/ADM_Spacing_declare.h"

c we’re not taking any derivatives here, but if we were,
c we would also need the following line:
#include "CactusEinstein/ADMMacros/src/macro/ADM_Spacing.h"

<CUT>

c Add the shift term: N = B^i D_i(trK).
if ((maxshift).and.(shift_state.eq.1)) then

do k=1,nz
do j=1,ny

do i=1,nx
#include "CactusEinstein/ADMMacros/src/macro/TRK_guts.h"

K_temp(i,j,k) = TRK_TRK
end do

end do
end do

#include "CactusEinstein/ADMMacros/src/macro/TRK_undefine.h"

3.2 C

This function computes the curved-space Laplacian of a scalar field φ, ∇i∇iφ = gij∂ijφ − gijΓk
ij∂kφ,

assuming that the partial derivatives ∂ijφ and ∂kφ have already been computed:

4

/*

* This function computes the curved-space Laplacian of a scalar field,

* $\del^i \del_i \phi

* = g^{ij} \partial_{ij} \phi - g^{ij} \Gamma^k_{ij} \partial_k \phi$

* at the interior grid points only; it doesn’t do anything at all on the

* boundaries.

*

* This function uses the following Cactus grid functions:

* input: dx_phi, dy_phi, dz_phi # 1st derivatives of phi

* dxx_phi, dxy_phi, dxz_phi, # 2nd derivatives of phi

* dyy_phi, dyz_phi,

* dzz_phi

* output: Laplacian_phi

*/

void compute_Laplacian(CCTK_ARGUMENTS)

{

DECLARE_CCTK_ARGUMENTS

int i,j,k;

/* contracted Christoffel symbols $\Gamma^k = g^{ij} \Gamma^k_{ij}$ */

CCTK_REAL Gamma_u_x, Gamma_u_y, Gamma_u_z;

/* grid-function strides for ADMMacros */

const int di = 1;

const int dj = cctk_lsh[0];

const int dk = cctk_lsh[0]*cctk_lsh[1];

/* declare the ADMMacros variables for g^{ij} and Γ^k_{ij} */

#include "CactusEinstein/ADMMacros/src/macro/UPPERMET_declare.h"

#include "CactusEinstein/ADMMacros/src/macro/CHR2_declare.h"

for (k = 1 ; k < cctk_lsh[2]-1 ; ++k)

{

for (j = 1 ; j < cctk_lsh[1]-1 ; ++j)

{

for (i = 1 ; i < cctk_lsh[0]-1 ; ++i)

{

const int ijk = CCTK_GFINDEX3D(cctkGH,i,j,k); /* grid-function subscripting index for ADMMacros */

/* (must be assigned inside the i,j,k loops) */

/* compute the ADMMacros g^{ij} and Γ^k_{ij} variables at the (i,j,k) grid point */

#include "CactusEinstein/ADMMacros/src/macro/UPPERMET_guts.h"

#include "CactusEinstein/ADMMacros/src/macro/CHR2_guts.h"

/* compute the contracted Christoffel symbols $\Gamma^k = g^{ij} \Gamma^k_{ij}$ */

Gamma_u_x =

UPPERMET_UXX*CHR2_XXX + 2.0*UPPERMET_UXY*CHR2_XXY + 2.0*UPPERMET_UXZ*CHR2_XXZ

+ UPPERMET_UYY*CHR2_XYY + 2.0*UPPERMET_UYZ*CHR2_XYZ

+ UPPERMET_UZZ*CHR2_XZZ;

Gamma_u_y =

UPPERMET_UXX*CHR2_YXX + 2.0*UPPERMET_UXY*CHR2_YXY + 2.0*UPPERMET_UXZ*CHR2_YXZ

+ UPPERMET_UYY*CHR2_YYY + 2.0*UPPERMET_UYZ*CHR2_YYZ

+ UPPERMET_UZZ*CHR2_YZZ;

Gamma_u_z =

UPPERMET_UXX*CHR2_ZXX + 2.0*UPPERMET_UXY*CHR2_ZXY + 2.0*UPPERMET_UXZ*CHR2_ZXZ

+ UPPERMET_UYY*CHR2_ZYY + 2.0*UPPERMET_UYZ*CHR2_ZYZ

+ UPPERMET_UZZ*CHR2_ZZZ;

/* compute the Laplacian */

Laplacian_phi[ijk] =

UPPERMET_UXX*dxx_phi[ijk] + 2.0*UPPERMET_UXY*dxy_phi[ijk] + 2.0*UPPERMET_UXZ*dxz_phi[ijk]

+ UPPERMET_UYY*dyy_phi[ijk] + 2.0*UPPERMET_UYZ*dyz_phi[ijk]

+ UPPERMET_UZZ*dzz_phi[ijk]

- Gamma_u_x*dx_phi[ijk] - Gamma_u_y*dy_phi[ijk] - Gamma_u_z*dz_phi[ijk];

}

5

}

}

#include "CactusEinstein/ADMMacros/src/macro/UPPERMET_undefine.h"

#include "CactusEinstein/ADMMacros/src/macro/CHR2_undefine.h"

}

4 Macros

Macros exist for the following quantities

6

Calculates Macro Name Sets variables
All first spatial derivatives of
lapse, α,i:

DA DA DXDA, DA DYDA,
DA DZDA

All second spatial derivatives of
lapse, α,ij :

DDA DDA DXXDA, DDA DXYDA,
DDA DXZDA, DDA DYYDA,
DDA DYZDA, DDA DZZDA

All second covariant spatial
derivatives of lapse, α;ij :

CDCDA

All first spatial derivatives of
shift, βi

j :
DB

All first covariant derivatives of
the extrinsic curvature, Kij;kl

CDK

First covariant derivatives of the
extrinsic curvature, Kij;x, Kij;y,
Kij;z

CDXCDK, CDYCDK,
CDZCDK

Determinant of 3-metric: DETG
Upper 3-metric, gij: UPPERMET
Trace of extrinsic curvature trK: TRK
Trace of stress energy tensor: TRT
Hamiltonian constraint: HAMADM
Partial derivatives of extrinsic
curvature, Kij,x, Kij,y, Kij,z:

DXDK, DYDK, DZDK

First partial derivatives of 3-
metric, gij,x, gij,y, gij,z:

DXDG, DYDG, DZDG

All first partial derivatives of 3-
metric, gij,k:

DG

First covariant derivatives of 3-
metric, gij;x, gij;y, gij;z:

DXDCG, DYDCG, DZDCG

Second partial derivatives of 3-
metric, gij,xx, gij,xy, gij,xz:

DXXDG, DXYDG, DXZDG,
DYYDG, DYZDG, DZZDG

All second partial derivative of 3-
metric, gij,lm

DDG

Ricci tensor Rij : RICCI
Trace of Ricci tensor R: TRRICCI
Christoffel symbols of first kind:
Γcab

CHR1

Christoffel symbols of second
kind Γc

ab:
CHR2

Momentum constraints MOMX, MOMY, MOMZ
Source term in evolution equa-
tion for conformal metric, g̃ij,t:

DCGDT

5 Definitions

Γcab =
1
2

(gac,b + gbc,a − gab,c) (1)

Γc
ab = gcdΓdab =

1
2
gcd (gad,b + gbd,a − gab,d) (2)

7

	Purpose
	Finite Differencing

	Using ADM Macros
	Fortran
	C

	Examples
	Fortran
	C

	Macros
	Definitions

