Time
Gabrielle Allen

Date: 2003/06/07 17:21:18

Abstract

Calculates the timestep used for an evolution

1 Purpose

This thorn provides routines for calculating the timestep for an evolution based on the spatial Cartesian
grid spacing and a wave speed.

2 Description

Thorn Time uses one of four methods to decide on the timestep to be used for the simulation. The method
is chosen using the keyword parameter time: :timestep_method.

e time::timestep_method = "given"

The timestep is fixed to the value of the parameter time: :timestep.

e time::timestep_method = "courant_static"

This is the default method, which calculates the timestep once at the start of the simulation, based
on a simple courant type condition using the spatial gridsizes and the parameter time: :dtfac.

At = dtfac * min(Az?)

Note that it is up to the user to custom dtfac to take into account the dimension of the space
being used, and the wave speed.

e time::timestep_method = "courant_speed"

This choice implements a dynamic courant type condition, the timestep being set before each
iteration using the spatial dimension of the grid, the spatial grid sizes, the parameter courant_fac
and the grid variable courant_wave_speed. The algorithm used is

At = courant_fac * min(Az’)/courant_wave_speed/v/dim

For this algorithm to be successful, the variable courant wave_speed must have been set by
some thorn to the maximum propagation speed on the grid before this thorn sets the timestep,
that is AT POSTSTEP BEFORE Time_Courant (or earlier in the evolution loop). [Note: The name
courant_wave_speed was poorly chosen here, the required speed is the maximum propagation speed
on the grid which may be larger than the maximum wave speed (for example with a shock wave
in hydrodynamics, also it is possible to have propagation without waves as with a pure advection
equation).

e time::timestep_method = "courant_time"

This choice is similar to the method courant_speed above, in implementing a dynamic timestep.
However the timestep is chosen using

At = courant_fac % courant min_time/Vdim



where the grid variable courant min time must be set by some thorn to the minimum time
for a wave to cross a gridzone before this thorn sets the timestep, that is AT POSTSTEP BEFORE
Time_Courant (or earlier in the evolution loop).

In all cases, Thorn Time sets the Cactus variable cctk_delta_time which is passed as part of the
macro CCTK_ARGUMENTS to thorns called by the scheduler.

Note that for hyperbolic problems, the Courant condition gives a minimum requirement for stability,
namely that the numerical domain of dependency must encompass the physical domain of dependency,
or

At < min(Az') /wave speed/vdim
3 Examples
Fixed Value Timestep

time::timestep_method = "given"
time: :timestep 0.1

Calculate Static Timestep Based on Grid Spacings
The following parameters set the timestep to be 0.25

grid::dx = 0.5
grid::dy =1.0
grid::dz =1.0
time: :timestep_method = "courant_static"

time::dtfac = 0.5



	Purpose
	Description
	Examples

