
Method of Lines

Ian Hawke

Date: 2006/09/20 08:55:54

Abstract

The Method of Lines is a way of separating the time integration from the rest of an evolution
scheme. This thorn is intended to take care of all the bookwork and provide some basic time inte-
gration methods, allowing for easy coupling of different thorns.

1 Purpose

The Method of Lines (MoL) converts a (system of) partial differential equation(s) into an ordinary
differential equation containing some spatial differential operator. As an example, consider writing the
hyperbolic system of PDE’s

∂tq + Ai(q)∂iB(q) = s(q) (1)

in the alternative form
∂tq = L(q), (2)

which (assuming a given discretization of space) is an ODE.

Given this separation of the time and space discretizations, well known stable ODE integrators such as
Runge-Kutta can be used to do the time integration. This is more modular (allowing for simple extensions
to higher order methods), more stable (as instabilities can now only arise from the spatial discretization
or the equations themselves) and also avoids the problems of retaining high orders of convergence when
coupling different physical models.

MoL can be used for hyperbolic, parabolic and even elliptic problems (although I definitely don’t recom-
mend the latter). As it currently stands it is set up for systems of equations in the first order type form
of equation (2). If you want to implement a multilevel scheme such as leapfrog it is not obvious to me
that MoL is the thing to use. However if you have lots of thorns that you want to interact, for example
ADM BSSN and a hydro code plus maybe EM or a scalar field, and they can easily be written in this
sort of form, then you probably want to use MoL.

This thorn is meant to provide a simple interface that will implement the MoL inside Cactus as trans-
parently as possible. It will initially implement only the optimal Runge-Kutta time integrators (which
are TVD up to RK3, so suitable for hydro) up to fourth order and iterated Crank Nicholson. All of the
interaction with the MoL thorn should occur directly through the scheduler. For example, all synchro-
nization steps should now be possible at the schedule level. This is essential for interacting cleanly with
different drivers, especially to make Mesh Refinement work.

For more information on the Method of Lines the most comprehensive references are the works of Jonathan
Thornburg [1, 2] - see especially section 7.3 of the thesis. From the CFD viewpoint the review of ENO

1

methods by Shu, [3], has some information. For relativistic fluids the paper of Neilsen and Choptuik [4]
is also quite good.

2 How to use

2.1 Thorn users

For those who used the old version of MoL, this version is unfortunately slightly more effort to use. That
is, for most methods you’ll now have to set 4 parameters instead of just one.

If you already have a thorn that uses the method of lines, then there are four main parameters that are
relevant to change the integration method. The keyword MoL ODE Method chooses between the different
methods. Currently supported are RK2, RK3, ICN, ICN-Avg and Generic. These are second order Runge-
Kutta, third order Runge-Kutta, Iterative Crank Nicholson, Iterative Crank Nicholson with averaging,
and the generic Shu-Osher type Runge-Kutta methods. To switch between the different types of generic
methods there is also the keyword Generic Type which is currently restricted to RK for the standard
TVD Runge-Kutta methods (first to fourth order) and ICN for the implementation of the Iterative Crank
Nicholson method in generic form.

Full descriptions of the currently implemented methods are given in section 4.

The parameter MoL Intermediate Steps controls the number of intermediate steps for the ODE solver.
For the generic Runge-Kutta solvers it controls the order of accuracy of the method. For the ICN
methods this parameter controls the number of iterations taken, which does not check for stability.
This parameter defaults to 3.

The parameter MoL Num Scratch Levels controls the amount of scratch space used. If this is insufficient
for the method selected there will be an error at parameter checking time. This parameter defaults to 0,
as no scratch space is required for the efficient ICN and Runge-Kutta 2 and 3 solvers. For the generic
solvers this must be at least MoL Intermediate Steps - 1.

Another parameter is MoL Memory Always On which switches on memory for the scratch space always if
true and only during evolution if false. This defaults to true for speed reasons; the memory gains are
likely to be limited unless you’re doing something very memory intensive at initialization or analysis.

There is also a parameter MoL NaN Check that will check your RHS grid functions for NaNs using the
NaNChecker thorn from CactusUtils. This will make certain that you find the exact grid function com-
puting the first NaN; of course, this may not be the real source of your problem.

The parameter disable prolongation only does anything if you are using mesh refinement, and in
particular Carpet. With mesh refinement it may be necessary to disable prolongation in intermediate
steps of MoL. This occurs when evolving systems containing second spatial derivatives. This is done by
default in MoL. If your system is purely first order in space and time you may wish to set this to "no".

Ideally, initial data thorns should always set initial data at all time levels. However, sometimes initial
data thorns fail to do this. In this case you can do one of three things:

• Fix the initial data thorn. This is the best solution.

• If you’re using Carpet, it has some facilities to take forward/backward time steps to initialize
multiple time levels. See the Carpet parameters init_each_timelevel and init_3_timelevels

2

for details.

• Finally, if you set (the MoL parameter) initial_data_is_crap, MoL will copy the current time
level of all variables it knows about (more precisely, using the terminology of section 2.2, all evolved,
save-and-restore, and constrained variables which have multiple time levels) to all the past time
levels. Note that this copies the same data to each past time level; this will be wrong
if your spacetime is time-dependent!

If enabled, the copy happens in the CCTK_POSTINITIAL schedule bin. By default this happens before
the MoL_PostStep schedule group; the parameter copy_ID_after_MoL_PostStep can be used to
change this to after MoL_PostStep.

2.2 Thorn writers

To port an existing thorn using the method of lines, or to write a new thorn using it, should hopefully
be relatively simple. As an example, within the MoL arrangement is WaveMoL which duplicates the
WaveToy thorn given by CactusWave in a form suitable for use by MoL. In this section, “the thorn” will
mean the user thorn doing the physics.

We start with some terminology. Grid functions are split into four cateogories.

1. The first are those that are evolved using a MoL form. That is, a right hand side is calculated and
the variable updated using it. These we call evolved variables.

2. The second category are those variables that are set by a thorn at every intermediate step of the
evolution, usually to respect the constraints. Examples of these include the primitive variables
in a hydrodynamics code. Another example would be the gauge variables if these were set by
constraints at every intermediate step (which is slightly artificial; the usual example would be the
use of maximal slicing, which is only applied once every N complete steps). These are known as
constrained variables.

3. The third category are those variables that a thorn depends on but does not set or evolve. An
example would include the metric terms considered from a thorn evolving matter. Due to the way
that MoL deals with these, they are known as Save and Restore variables.

4. The final category are those variables that do not interact with MoL. These would include temporary
variables for analysis or setting up the initial data. These can safely be ignored.

As a generic rule of thumb, variables for which you have a time evolution equation are evolved (obviously),
variables which your thorn sets but does not evolve are constrained, and any other variables which your
thorn reads during evolution is a Save and Restore variable.

MoL needs to know every GF that falls in one of the first three groups. If a GF is evolved by one thorn
but is a constrained variable in another (for example, the metric in full GR Hydro) then each thorn
should register the function as they see it. For example, the hydro thorn will register the metric as a
Save and Restore variable and the spacetime thorn will register the metric as an evolved variable. The
different variable categories are given the priority evolved, constrained, Save and Restore. So if a variable
is registered as belonging in two different categories, it is always considered by MoL to belong to the
category with the highest priority.

MoL needs to know the total number of GFs in each category at parameter time. To do this, your thorn
needs to use some accumulator parameters from MoL. As an example, here are the paramaters from
WaveMoL:

3

shares: MethodOfLines

USES CCTK_INT MoL_Num_Evolved_Vars
USES CCTK_INT MoL_Num_Constrained_Vars
USES CCTK_INT MoL_Num_SaveAndRestore_Vars

restricted:

CCTK_INT WaveMoL_MaxNumEvolvedVars \
"The maximum number of evolved variables used by WaveMoL" \
ACCUMULATOR-BASE=MethodofLines::MoL_Num_Evolved_Vars

{
5:5 :: "Just 5: phi and the four derivatives"

} 5

CCTK_INT WaveMoL_MaxNumConstrainedVars \
"The maximum number of constrained variables used by WaveMoL" \
ACCUMULATOR-BASE=MethodofLines::MoL_Num_Constrained_Vars

{
0:1 :: "A small range, depending on testing or not"

} 1

CCTK_INT WaveMoL_MaxNumSandRVars \
"The maximum number of save and restore variables used by WaveMoL" \
ACCUMULATOR-BASE=MethodofLines::MoL_Num_SaveAndRestore_Vars

{
0:1 :: "A small range, depending on testing or not"

} 1

This should give the maximum number of variables that your thorn will register.

Every thorn should register every grid function that it uses even if you expect it to be registered again by a
different thorn. For example, a hydro thorn would register the metric variables as Save and Restore, whilst
the spacetime evolution thorn would register them as evolved (in ADM) or constrained (in ADM BSSN),
both of which have precedence. To register your GFs with MoL schedule a routine in the bin MoL Register
which just contains the relevant function calls. For an evolved variable the GF corresponding to the update
term (L(q) in equation (2)) should be registered at the same time. The appropriate functions are given
in section 5.

These functions are provided using function aliasing. For details on using function aliasing, see sections
B10.5 and F2.2.3 of the UsersGuide. For the case of real GFs, you simply add the following lines to your
interface.ccl:

##
PROTOTYPES - DELETE AS APPLICABLE!
##

CCTK_INT FUNCTION MoLRegisterEvolved(CCTK_INT EvolvedIndex, CCTK_INT RHSIndex)
CCTK_INT FUNCTION MoLRegisterConstrained(CCTK_INT ConstrainedIndex)
CCTK_INT FUNCTION MoLRegisterSaveAndRestore(CCTK_INT SandRIndex)
CCTK_INT FUNCTION MoLRegisterEvolvedGroup(CCTK_INT EvolvedIndex, \

CCTK_INT RHSIndex)

4

CCTK_INT FUNCTION MoLRegisterConstrainedGroup(CCTK_INT ConstrainedIndex)
CCTK_INT FUNCTION MoLRegisterSaveAndRestoreGroup(CCTK_INT SandRIndex)
CCTK_INT FUNCTION MoLChangeToEvolved(CCTK_INT EvolvedIndex, CCTK_INT RHSIndex)
CCTK_INT FUNCTION MoLChangeToConstrained(CCTK_INT ConstrainedIndex)
CCTK_INT FUNCTION MoLChangeToSaveAndRestore(CCTK_INT SandRIndex)
CCTK_INT FUNCTION MoLChangeToNone(CCTK_INT RemoveIndex)

###
USE STATEMENT - DELETE AS APPLICABLE!
###

USES FUNCTION MoLRegisterEvolved
USES FUNCTION MoLRegisterConstrained
USES FUNCTION MoLRegisterSaveAndRestore
USES FUNCTION MoLRegisterEvolvedGroup
USES FUNCTION MoLRegisterConstrainedGroup
USES FUNCTION MoLRegisterSaveAndRestoreGroup
USES FUNCTION MoLChangeToEvolved
USES FUNCTION MoLChangeToConstrained
USES FUNCTION MoLChangeToSaveAndRestore
USES FUNCTION MoLChangeToNone

Note that the list of paramters not complete; see the section on parameters for the use of arrays or
complex variables. However, the list of functions is, and is expanded on in section 5. MoL will check
whether a group or variable is a GF or an array and whether it is real or complex. Note that currently
complex variable support is disabled.

Having done that, one routine (or group of routines) which we’ll here call Thorn CalcRHS must be defined.
This does all the finite differencing that you’d usually do, applied to q, and finds the right hand sides
which are stored in L. This routine should be scheduled in MoL CalcRHS. The precise order that these
are scheduled should not matter, because no updating of any of the user thorns q will be done until after
all the RHSs are calculated. Important note: all the finite differencing must be applied to the most
recent time level q and not to the previous time level qp as you would normally do. Don’t worry about
setting up the data before the calculation, as MoL will do that automatically.

Finally, if you have some things that have to be done after each update to an intermediate level, these
should be scheduled in MoL PostStep. Examples of things that need to go here include the recalculation
of primitive variables for hydro codes, the application of boundary conditions1, the solution of elliptic
equations (although this would be a very expensive place to solve them, some sets of equations might
require the updating of some variables by constraints in this fashion). When applying boundary conditions
the cleanest thing to do is to write a routine applying the symmetries to the appropriate GFs and, when
calling it from the scheduler, adding the SYNC statement to the appropriate groups. An example is given
by the routine WaveToyMoL Boundaries in thorn WaveMoL.

Points to note. The thorn routine Thorn CalcRHS does not need to know and in fact should definitely not
know where precisely in the MoL step it is. It just needs to know that it is receiving some intermediate
data stored in the GFs q and that it should return the RHS L(q). All the book-keeping to ensure that it
is passed the correct intermediate state at that the GFs contain the correct data at the end of the MoL
step will be dealt with by the MoL thorn and the flesh.

1It is possible to alter the calculation of L so that boundary conditions are automatically updated and do not need
setting. This is slightly tricksy. For an example of how this would work see the new radiative boundary condition in
ADM BSSN. For more on this see section 7.3.4 of [1].

5

2.3 Evolution method writers

If you want to try adding a new evolution method to MoL the simplest way is to use the generic table
option to specify it completely in the parameter file - no coding is required at all.

All the generic methods evolve the equation

∂tq = L(q) (3)

using the following algorithm for an N -step method:

q(0) = qn,

q(i) =
i−1∑
k=0

(
αikq(k)

)
+ ∆tβi−1L(q(i−1)), i = 1, . . . , N, (4)

qn+1 = q(N).

This method is completely specified byN (GenericIntermediateSteps) and the α (GenericAlphaCoeffs)
and β (GenericBetaCoeffs) arrays. The names in parentheses give the keys in a table that MoL will
use. This table is created from the string parameter Generic Method Descriptor.

As an example, the standard TVD RK2 method that is implemented both in optimized and generic form
is written as

q(1) = qn + ∆tL(qn), (5)

qn+1 =
1
2

(
qn + q(1) + ∆tL(q(1))

)
. (6)

To implement this using the generic table options, use

methodoflines::MoL_Intermediate_Steps = 2
methodoflines::MoL_Num_Scratch_Levels = 1
methodoflines::Generic_Method_Descriptor = \

"GenericIntermediateSteps = 2 \
GenericAlphaCoeffs = { 1.0 0.0 0.5 0.5 } \
GenericBetaCoeffs = { 1.0 0.5 }"

The number of steps specified in the table must be the same as MoL Intermediate Steps, and the number
of scratch levels should be at least MoL Intermediate Steps - 1.

The generic methods are somewhat inefficient for use in production runs, so it is frequently better to
write an optimized version once you are happy with the method. To do this you should

• write your code into a new file, called from the scheduler under the alias MoL Add,

• make certain that at each intermediate step the correct values of cctk time and cctk delta time
are set in SetTime.c for mesh refinement, boundary conditions and so on,

• make certain that you check for the number of intermediate steps in ParamCheck.c.

6

3 Example

As a fairly extended example of how to use MoL I’ll outline how ADM BSSN works in this context. The
actual implementation of this is given in the thorn AEIThorns/BSSN MoL.

As normal the required variables are defined in the interface.ccl file, together with the associated
source terms. For example, the conformal factor and source are defined by

real ADM_BSSN_phi type=GF timelevels=2
{
ADM_BS_phi

} "ADM_BSSN_phi"

real ADM_BSSN_sources type=GF
{
...,
adm_bs_sphi,

...
}

Also in this file we write the function aliasing prototypes.

Once the sources are defined the registration with MoL is required, for which the essential file is
MoLRegister.c. In the ADM BSSN system the standard metric coefficients gij are not evolved, and
neither are the standard extrinsic curvature components Kij . However these are used by ADM BSSN in
a number of places, and are calculated from evolved quantities at the appropriate points. In the MoL
terminology these variables are constrained. As the appropriate storage is defined in thorn ADMBase,
the actual calls have the form

ierr += MoLRegisterConstrained(CCTK_VarIndex("ADMBase::kxx"));

The actual evolved variables include things such as the conformal factor. This, and the appropriate
source term, is defined in thorn ADM BSSN, and so the call has the form

ierr += MoLRegisterEvolved(CCTK_VarIndex("adm_bssn::ADM_BS_phi"),
CCTK_VarIndex("adm_bssn::adm_bs_sphi"));

As well as the evolved variables, and those constrained variables such as the metric, there are the gauge
variables. Precisely what status these have depends on how they are set. If harmonic or 1+log slicing is
used then the lapse is evolved:

ierr += MoLRegisterEvolved(CCTK_VarIndex("ADMBase::alp"),
CCTK_VarIndex("adm_bssn::adm_bs_salp"));

If maximal or static slicing is used then the lapse is a constrained variable2:
2Note that this is actually a bit of a hack. The rational for Save and Restore variables was to deal with maximal slicing.

However it turned out that I hadn’t thought it through correctly and that the treatment for constrained variables was
required.

7

ierr += MoLRegisterConstrained(CCTK_VarIndex("ADMBase::alp"));

Finally, if none of the above apply we assume that the lapse is evolved in some unknown fashion, and so
it must be registered as a Save and Restore variable:

ierr += MoLRegisterSaveAndRestore(CCTK_VarIndex("ADMBase::alp"));

However, it is perfectly possible that we may wish to change how we deal with the gauge during the
evolution. This is dealt with in the file PreLoop.F. If the slicing changes then the appropriate routine is
called. For example, if we want to use 1+log evolution then we call

call CCTK_VarIndex(lapseindex,"ADMBase::alp")
call CCTK_VarIndex(lapserhsindex,"adm_bssn::adm_bs_salp")
ierr = ierr + MoLChangeToEvolved(lapseindex, lapserhsindex)

It is not required to tell MoL what the lapse is changing from, or indeed if it is changing at all; MoL will
work this out for itself.

Finally there are the routines that we wish to apply after every intermediate step. These are ADM BSSN removetrA
which enforces various constraints (such as the tracefree conformal extrinsic curvature remaining trace
free), ADM BSSN Boundaries which applies symmetry boundary conditions as well as various others (such
as some of the radiative boundary conditions). Note all the calls to SYNC at this point. We also convert
from the updated BSSN variables back to the standard ADM variables in ADM BSSN StandardVariables,
and also update the time derivative of the lapse in ADM BSSN LapseChange.

4 Time evolution methods provided by MoL

The default method is Iterative Crank-Nicholson. There are many ways of implementing this. The
standard "ICN" and "Generic"/"ICN" methods both implement the following, assuming an N iteration
method:

q(0) = qn, (7)

q(i) = q(0) +
∆t
2

L(q(i−1)), i = 1, . . . , N − 1, (8)

q(N) = q(N−1) + ∆tL(q(N−1)), (9)
qn+1 = q(N) (10)

The “averaging” ICN method "ICN-avg" instead calculates intermediate steps before averaging:

q(0) = qn, (11)

q̃(i) =
1
2

(
q(i) + qn

)
, i = 0, . . . , N − 1 (12)

q(i) = q(0) + ∆tL(q̃(N−1)), (13)
qn+1 = q(N) (14)

8

The Runge-Kutta methods are those typically used in hydrodynamics by, e.g., Shu and others — see [3]
for example. Explicitly the first order method is the Euler method:

q(0) = qn, (15)
q(1) = q(0) + ∆tL(q̃(0)), (16)

qn+1 = q(1). (17)

The second order method is:

q(0) = qn, (18)
q(1) = q(0) + ∆tL(q(0)), (19)

q(2) =
1
2

(
q(0) + q(1) + ∆tL(q(1))

)
, (20)

qn+1 = q(2). (21)

The third order method is:

q(0) = qn, (22)
q(1) = q(0) + ∆tL(q(0)), (23)

q(2) =
1
4

(
3q(0) + q(1) + ∆tL(q(1))

)
, (24)

q(3) =
1
3

(
q(0) + 2q(2) + 2∆tL(q(2))

)
, (25)

qn+1 = q(3). (26)

The fourth order method, which is not strictly TVD, is:

q(0) = qn, (27)

q(1) = q(0) +
1
2

∆tL(q(0)), (28)

q(2) = q(0) +
1
2

∆tL(q(1)), (29)

q(3) = q(0) + ∆t L(q(2)), (30)

q(4) =
1
6

(
−2q(0) + 2q(1) + 4q(2) + 2q(3) + ∆tL(q(3))

)
, (31)

qn+1 = q(4). (32)

5 Functions provided by MoL

All the functions listed below return error codes in theory. However at this current point in time they
always return 0 (success). Any failure to register or change a GF is assumed fatal and MoL will issue a
level 0 warning stopping the code. This may change in future, in which case negative return values will
indicate errors.

These are all aliased functions. You can get the functions directly through header files, but this feature
may be phased out. Using function aliasing is the recommended method.

9

MoLRegisterEvolved

Tells MoL that the given GF is in the evolved category with the associated update GF.

Synopsis

C CCTK_INT ierr = MoLRegisterEvolved(CCTK_INT EvolvedIndex,
CCTK_INT RHSIndex)

Fortran CCTK_INT ierr = MoLRegisterEvolved(CCTK_INT EvolvedIndex,
CCTK_INT RHSIndex)

Result

Currently if there is an error, MoL will issue a level 0 warning. No sensible return codes exist.

0 success

Parameters

EvolvedIndex Index of the GF to be evolved.

RHSIndex Index of the associated update GF.

Discussion

Should be called in a function scheduled in MoL Register.

See Also

CCTK VarIndex() Get the variable index.

MoLRegisterSaveAndRestore() Register Save and Restore variables.

MoLRegisterConstrained() Register constrained variables.

MoLChangeToEvolved() Change a variable at runtime to be evolved.

Examples

C ierr = MoLRegisterEvolved(CCTK_VarIndex("wavetoymol::phi"),
CCTK_VarIndex("wavetoymol::phirhs"));

Fortran call CCTK_VarIndex(EvolvedIndex, "wavetoymol::phi")
call CCTK_VarIndex(RHSIndex, "wavetoymol::phirhs")
ierr = MoLRegisterEvolved(EvolvedIndex, RHSIndex)

10

MoLRegisterConstrained

Tells MoL that the given GF is in the constrained category.

Synopsis

C CCTK_INT ierr = MoLRegisterConstrained(CCTK_INT ConstrainedIndex)

Fortran CCTK_INT ierr = MoLRegisterConstrained(CCTK_INT ConstrainedIndex)

Result

Currently if there is an error, MoL will issue a level 0 warning. No sensible return codes exist.

0 success

Parameters

ConstrainedIndex
Index of the constrained GF.

Discussion

Should be called in a function scheduled in MoL Register.

See Also

CCTK VarIndex() Get the variable index.

MoLRegisterEvolved() Register evolved variables.

MoLRegisterSaveAndRestore() Register Save and Restore variables.

MoLChangeToConstrained() Change a variable at runtime to be constrained.

Examples

C ierr = MoLRegisterConstrained(CCTK_VarIndex("ADMBase::alp"));

Fortran call CCTK_VarIndex(ConstrainedIndex, "ADMBase::alp")
ierr = MoLRegisterConstrained(ConstrainedIndex)

11

MoLRegisterSaveAndRestore

Tells MoL that the given GF is in the Save and Restore category.

Synopsis

C CCTK_INT ierr = MoLRegisterSaveAndRestore(CCTK_INT SandRIndex)

Fortran CCTK_INT ierr = MoLRegisterSaveAndRestore(CCTK_INT SandRIndex)

Result

Currently if there is an error, MoL will issue a level 0 warning. No sensible return codes exist.

0 success

Parameters

SandRIndex Index of the Save and Restore GF.

Discussion

Should be called in a function scheduled in MoL Register.

See Also

CCTK VarIndex() Get the variable index.

MoLRegisterEvolved() Register evolved variables.

MoLRegisterConstrained() Register constrained variables.

MoLChangeToSaveAndRestore() Change a variable at runtime to be Save and Restore.

Examples

C ierr = MoLRegisterSaveAndRestore(CCTK_VarIndex("ADMBase::alp"));

Fortran call CCTK_VarIndex(SandRIndex, "ADMBase::alp")
ierr = MoLRegisterSaveAndRestore(SandRIndex)

12

MoLRegisterEvolvedGroup

Tells MoL that the given group is in the evolved category with the associated update group.

Synopsis

C CCTK_INT ierr = MoLRegisterEvolvedGroup(CCTK_INT EvolvedIndex,
CCTK_INT RHSIndex)

Fortran CCTK_INT ierr = MoLRegisterEvolvedGroup(CCTK_INT EvolvedIndex,
CCTK_INT RHSIndex)

Result

Currently if there is an error, MoL will issue a level 0 warning. No sensible return codes exist.

0 success

Parameters

EvolvedIndex Index of the group to be evolved.

RHSIndex Index of the associated update group.

Discussion

Should be called in a function scheduled in MoL Register.

See Also

CCTK GroupIndex() Get the group index.
MoLRegisterSaveAndRestoreGroup()

Register Save and Restore variables.

MoLRegisterConstrainedGroup() Register constrained variables.

Examples

C ierr = MoLRegisterEvolvedGroup(CCTK_GroupIndex("wavetoymol::scalarevolvemol"),
CCTK_GroupIndex("wavetoymol::scalarevolvemolrhs"));

Fortran call CCTK_GroupIndex(EvolvedIndex, "wavetoymol::scalarevolvemol")
call CCTK_GroupIndex(RHSIndex, "wavetoymol::scalarevolvemolrhs")
ierr = MoLRegisterEvolvedGroup(EvolvedIndex, RHSIndex)

13

MoLRegisterConstrainedGroup

Tells MoL that the given group is in the constrained category.

Synopsis

C CCTK_INT ierr = MoLRegisterConstrainedGroup(CCTK_INT ConstrainedIndex)

Fortran CCTK_INT ierr = MoLRegisterConstrainedGroup(CCTK_INT ConstrainedIndex)

Result

Currently if there is an error, MoL will issue a level 0 warning. No sensible return codes exist.

0 success

Parameters

ConstrainedIndex
Index of the constrained group.

Discussion

Should be called in a function scheduled in MoL Register.

See Also

CCTK GroupIndex() Get the group index.

MoLRegisterEvolvedGroup() Register evolved variables.
MoLRegisterSaveAndRestoreGroup()

Register Save and Restore variables.

MoLChangeToConstrained() Change a variable at runtime to be constrained.

Examples

C ierr = MoLRegisterConstrainedGroup(CCTK_GroupIndex("ADMBase::lapse"));

Fortran call CCTK_GroupIndex(ConstrainedIndex, "ADMBase::lapse")
ierr = MoLRegisterConstrainedGroup(ConstrainedIndex)

14

MoLRegisterSaveAndRestoreGroup

Tells MoL that the given group is in the Save and Restore category.

Synopsis

C CCTK_INT ierr = MoLRegisterSaveAndRestoreGroup(CCTK_INT SandRIndex)

Fortran CCTK_INT ierr = MoLRegisterSaveAndRestoreGroup(CCTK_INT SandRIndex)

Result

Currently if there is an error, MoL will issue a level 0 warning. No sensible return codes exist.

0 success

Parameters

SandRIndex Index of the save and restore group.

Discussion

Should be called in a function scheduled in MoL Register.

See Also

CCTK GroupIndex() Get the group index.

MoLRegisterEvolvedGroup() Register evolved variables.

MoLRegisterConstrainedGroup() Register constrained variables.

Examples

C ierr = MoLRegisterSaveAndRestoreGroup(CCTK_GroupIndex("ADMBase::shift"));

Fortran call CCTK_GroupIndex(SandRIndex, "ADMBase::shift")
ierr = MoLRegisterSaveAndRestoreGroup(SandRIndex)

15

MoLChangeToEvolved

Sets a GF to belong to the evolved category, with the associated update GF. Not used for the initial
setting.

Synopsis

C CCTK_INT ierr = MoLChangeToEvolved(CCTK_INT EvolvedIndex,
CCTK_INT RHSIndex)

Fortran CCTK_INT ierr = MoLChangeToEvolved(CCTK_INT EvolvedIndex,
CCTK_INT RHSIndex)

Result

Currently if there is an error, MoL will issue a level 0 warning. No sensible return codes exist.

0 success

Parameters

EvolvedIndex Index of the evolved GF.

RHSIndex Index of the associated update GF.

Discussion

Should be called in a function scheduled in MoL PreStep. Note that this function was
designed to allow mixed slicings for thorn ADMBase. This set of functions is largely
untested and should be used with great care.

See Also

CCTK VarIndex() Get the variable index.

MoLRegisterEvolved() Register evolved variables.

MoLChangeToSaveAndRestore() Change a variable at runtime to be Save and Restore.

MoLChangeToConstrained() Change a variable at runtime to be constrained.

Examples

C ierr = MoLChangeToEvolved(CCTK_VarIndex("ADMBase::alp"),
CCTK_VarIndex("adm_bssn::adm_bs_salp"));

Fortran call CCTK_VarIndex(EvolvedIndex, "ADMBase::alp")
call CCTK_VarIndex(RHSIndex,"adm_bssn::adm_bs_salp")
ierr = MoLChangeToEvolved(EvolvedIndex, RHSIndex)

16

MoLChangeToConstrained

Sets a GF to belong to the constrained category. Not used for the initial setting.

Synopsis

C CCTK_INT ierr = MoLChangeToConstrained(CCTK_INT EvolvedIndex)

Fortran CCTK_INT ierr = MoLChangeToConstrained(CCTK_INT EvolvedIndex)

Result

Currently if there is an error, MoL will issue a level 0 warning. No sensible return codes exist.

0 success

Parameters

ConstrainedIndex
Index of the constrained GF.

Discussion

Should be called in a function scheduled in MoL PreStep. Note that this function was
designed to allow mixed slicings for thorn ADMBase. This set of functions is largely
untested and should be used with great care.

See Also

CCTK VarIndex() Get the variable index.

MoLRegisterConstrained() Register constrained variables.

MoLChangeToSaveAndRestore() Change a variable at runtime to be Save and Restore.

MoLChangeToEvolved() Change a variable at runtime to be evolved.

Examples

C ierr = MoLChangeToConstrained(CCTK_VarIndex("ADMBase::alp"));

Fortran call CCTK_VarIndex(EvolvedIndex, "ADMBase::alp")
ierr = MoLChangeToConstrained(EvolvedIndex)

17

MoLChangeToSaveAndRestore

Sets a GF to belong to the Save and Restore category. Not used for the initial setting.

Synopsis

C CCTK_INT ierr = MoLChangeToSaveAndRestore(CCTK_INT SandRIndex)

Fortran CCTK_INT ierr = MoLChangeToSaveAndRestore(CCTK_INT SandRIndex)

Result

Currently if there is an error, MoL will issue a level 0 warning. No sensible return codes exist.

0 success

Parameters

SandRIndex Index of the Save and Restore GF.

Discussion

Should be called in a function scheduled in MoL PreStep. Note that this function was
designed to allow mixed slicings for thorn ADMBase. This set of functions is largely
untested and should be used with great care.

See Also

CCTK VarIndex() Get the variable index.

MoLRegisterSaveAndRestore() Register Save and Restore variables.

MoLChangeToEvolved() Change a variable at runtime to be evolved.

MoLChangeToConstrained() Change a variable at runtime to be constrained.

Examples

C ierr = MoLChangeToSaveAndRestore(CCTK_VarIndex("ADMBase::alp"));

Fortran call CCTK_VarIndex(SandRIndex, "ADMBase::alp")
ierr = MoLChangeToSaveAndRestore(SandRIndex)

18

MoLChangeToNone

Sets a GF to belong to the “unknown” category. Not used for the initial setting.

Synopsis

C CCTK_INT ierr = MoLChangeToNone(CCTK_INT RemoveIndex)

Fortran CCTK_INT ierr = MoLChangeToNone(CCTK_INT RemoveIndex)

Result

Currently if there is an error, MoL will issue a level 0 warning. No sensible return codes exist.

0 success

Parameters

RemoveIndex Index of the “unknown” GF.

Discussion

Should be called in a function scheduled in MoL PreStep. Note that this function was
designed to allow mixed slicings for thorn ADMBase. This set of functions is largely
untested and should be used with great care.

See Also

CCTK VarIndex() Get the variable index.

MoLChangeToEvolved() Change a variable at runtime to be evolved.

MoLChangeToSaveAndRestore() Change a variable at runtime to be Save and Restore.

MoLChangeToConstrained() Change a variable at runtime to be constrained.

Examples

C ierr = MoLChangeToNone(CCTK_VarIndex("ADMBase::alp"));

Fortran call CCTK_VarIndex(RemoveIndex, "ADMBase::alp")
ierr = MoLChangeToNone(RemoveIndex)

References

[1] J. Thornburg. Numerical Relativity in Black Hole Spacetimes. Unpublished thesis, University of
British Columbia. 1993. Available from http://www.aei.mpg.de/~jthorn/phd/html/phd.html.

[2] J. Thornburg. A 3+1 Computational Scheme for Dynamic Spherically Symmetric Black Hole Space-
times – II: Time Evolution. Preprint gr-qc/9906022, submitted to Phys. Rev. D.

[3] C. Shu. High Order ENO and WENO Schemes for Computational Fluid Dynam-
ics. In T. J. Barth and H. Deconinck, editors High-Order Methods for Computational
Physics. Springer, 1999. A related online version can be found under Essentially Non-
Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws at
http://www.icase.edu/library/reports/rdp/97/97-65RDP.tex.refer.html.

19

[4] D. W. Neilsen and M. W. Choptuik. Ultrarelativistic fluid dynamics. Class. Quantum Grav., 17:
733–759, 2000.

20

	Purpose
	How to use
	Thorn users
	Thorn writers
	Evolution method writers

	Example
	Time evolution methods provided by MoL
	Functions provided by MoL

