Yaakoub Y El Khamra <yye00Qcct.lsu.edu>

Date: 2005/11/14 05:17:40

Abstract

This thorn implement processor-local reduction operations.

1 Introduction

A reduction operation can be defined as an operation on arrays (tuples) of variables resulting in a single
number. Typical reduction operations are sum, minimum/maximum value, and boolean operations. A
typical application is, for example, finding the minimum value in an n-dimensional array.

This thorn provides processor-local reduction operations only. Global reduction operations can make use
of these local reduction operations by providing the necessary inter-processor communication.

2 Numerical Implementation

The new local reduce thorn has several new features including index strides and offsets for array indexing
and full complex number support. Pending request, weight support can be enabled (there are some issues
that a mask is essentially a weight with 1 or 0 value).

Modifying or extending this thorn is quite a simple matter. The heart of all the reduction operations is
the large iterator macro in local reductions.h. This iterator supports n-dimensional arrays with offsets
and strides. The iterator is used in all local reduction operators in this thorn. To add a reduction
operator, or change an existing one, all that needs to be done is to change the actual reduction operation
definition which is called from within the iterator to perform the reduction.

To use a custom local reduction operator from the new global reduction implementation, some values
must be returned to the global reduction implementation, such as the type of MPI reduction operation
that needs to be performed (MPI_SUM, MPI_MIN, MPI_MAX) and if the final result should include a
division by the total number of points used in the reduction. These are set in the parameter table with
keys: mpi_operation and perform_division.

3 Using This Thorn

Please refer to the TestLocalReduce thorn in the CactusTest arrangement.

4 Reduction Operations

4.1 Basic Reduction Operations

The following reduction operations are imlemented. a; are the values that are reduced, i € [1...n].

count: The number of values
count :=n

sum: The sum of the values

sum := E a;
i

product: The product of the values
product := H a;
i

sum?2: The sum of the squares of the values
sum?2 := Z a?
i

sumabs: The sum of the absolute values

sum?2 := Z |a;|

i

sumabs2: The sum of the squares of the absolute values
sumabs2 := Z |a;|?
i
min: The minimum of the values
min := mina;
K3

max: The maximum of the values
max = maxa;
7

maxabs: The maximum of the absolute values
maxabs := max |a;|
(]
Note that the above definitions are for both real and complex values. For n = 0, the result of the

reduction operation is 0, except for product, which is 1, min, which is +o00, and max, which is —oco. We
define the minimum of complex values by

min (a + @b, z + 4y) := min (a,) + i min (b, y)

and define the maximum equivalently.

4.2 High-level Reduction Operations

The following high-level reduction operations are also implemented. They can be defined in terms of the
basic reduction operations above.

average: The algebraic mean of the values
average := sum/count

norml: The L, norm, i.e., the sum of the absolute values

norml := sumabs/count

norm2: The L, norm, i.e., the Pythagorean norm

norm2 := 4/sumabs2/count

norm_inf: The L., norm
norm_inf := maxabs

4.3 Weighted Reduction Operations

It is often convenient to assign a weight w; to each value a;. In this case, the basic reduction operations
are redefined as follows.

count: The number of values

count := E w;
i

sum: The sum of the values

sum := E w;a;
i

product: The product of the values

product := exp Z w; log a;

K3

sum?2: The sum of the squares of the values
sum2 := Z w;a?
i
sumabs: The sum of the absolute values

sum?2 := Zwﬂai\
i

sumabs2: The sum of the squares of the absolute values

sumabs2 := Z wia;|?
i

min: The minimum of the values
min :=minw; # 0 : a;
1

max: The maximum of the values
max = maxw; # 0 : a;
K2

maxabs: The maximum of the absolute values

maxabs := maxw; # 0 : |a;]
(2

The notation min; w; # 0 : a; means: “The minimum of a; where i runs over all values where w; # 07.
The definition of the high-level reduction operations does not change when weights are present.

	Introduction
	Numerical Implementation
	Using This Thorn
	Reduction Operations
	Basic Reduction Operations
	High-level Reduction Operations
	Weighted Reduction Operations

