
Cactus Tutorial

Thorn Writing 101
Yaakoub Y El Khamra

Frameworks Group, CCT

17 Feb, 2006

Agenda
• Downloading Cactus

– The “GetCactus” Script

– CVS

• Thorn writing

– Making a new thorn

– Editing the .ccl files

– Adding source code

• Running your code

– Building a configuration

– Viewing results

Downloading Cactus
• 2 convenient methods to download Cactus

• Always work with the development version

• Do NOT mix stable and development thorns and flesh

• Make sure you download all the thorns you need. If you need more
thorns you do not have, download them

• Keep an eye out for warnings, use the 'ls' command to list the
contents of your cactus directory. Make sure everything is there

GetCactus Script
• Obtained from:

http://www.cactuscode.org/toolkit/getcactus#getcactus

• You will need a ThornList, a list of thorns for the script to download.

• If you do not supply a ThornList the script will download the flesh
only.

• ThornLists can be obtained from:
http://www.cactuscode.org/toolkit/thornlists

http://www.cactuscode.org/toolkit/getcactus#getcactus

GetCactus Script
• Check that the script has the right permissions:

[yye00@fmws01 Tutorial2]$ ls -alF GetCactus
-rw-rw-r-- 1 yye00 yye00 44964 Feb 16 12:07 GetCactus

• Change the permissions to include execution:
[yye00@fmws01 Tutorial2]$ chmod +x GetCactus
[yye00@fmws01 Tutorial2]$ ls -alF GetCactus
-rwxrwxr-x 1 yye00 yye00 44964 Feb 16 12:07 GetCactus*

• Notice the 'x' in the file permissions, this means we can now run the
script

• Run the script: ./GetCactus Tutorial2.th

CVS
• Please attend the CVS tutorials given at CCT

• For those who know how to use CVS, perform the following:
cvs -d :pserver:cvs_anon@cvs.cactuscode.org:/cactusdevcvs login
the password is 'anon'.

• Once you are logged in:
cvs -d :pserver:cvs_anon@cvs.cactuscode.org:/cactusdevcvs co Cactus
to checkout Cactus

• cd arrangements
to enter the arrangements directory. Once inside arrangements, checkout the arrangements you
need using:
cvs -d :pserver:cvs_anon@cvs.cactuscode.org:/cactusdevcvs co <arrangement_name>

mailto:cvs_anon@cvs.cactuscode.org
mailto:cvs_anon@cvs.cactuscode.org
mailto:cvs_anon@cvs.cactuscode.org

Let's download Cactus

• Journey to the source of all evil:
www.cct.lsu.edu/~yye00

• Download the GetCactus script and the MyThorns.th
files.

• Run ./GetCactus MyThorns.th

• You now have a cactus checkout.

http://www.cct.lsu.edu/~yye00

Thorn Writing

• First things first, cd into the Cactus directory:
cd Cactus

• Always when starting up, do a make help to check for
options

• make newthorn

• If you are not inspired, specify RungeKutta as a thorn
name andTutorial2 as an arrangement.

Looking at your thorn...
• Your thorn has been created in:

arrangements/Tutorial2/RungeKutta

• There you will the following files:

– README

– interface.ccl

– param.ccl

– schedule.ccl

• and the following directories:
src/, doc/, par/, test/

• doc/ has documentation.latex (Attend the latex tutorials at CCT)

• src/ has make.code.defn

VIM TIME

• Keep your VIM cheat sheet handy

• cd arrangements/Tutorial2/RungeKutta

• vim interface.ccl

• Hit 'i' to enter insert mode.

• Next slide: this is what you have to have in your
interface.ccl

interface.ccl
• Input the following:

implements: RK #what the thorn implements
inherits: #what implementation the thorn inherits
public:
CCTK_REAL group1 type=Array DIM=1 size=group_size
{
 x, y
} "variables I will use"

• There is more on cactus variables later...

param.ccl
• This param.ccl file contains examples of the 3

basic parameter types:
Parameter definitions for thorn RungeKutta
$Header:$
INT group_size "size of our arrays in 1D"
{
 10:1000 ::"this is a dummy range just to
demonstrate ranges"
} 1000
REAL x_spacing "size of the spacing in the x-
direction"
{
 0:* ::"this means it can be anything greater than
zero"
} 0.01
REAL x_zero "Part of the initial condition"
{
 : ::"this means the range could be anything"
} 0.0

• REAL y_zero "Rest of the initial condition"
{
 : ::"this means the range could be anything"
} 1.0

KEYWORD method_order "which method to use"
{
 "second_order" :: "use the second order runge
kutta method"
 "fourth_order" :: "use the fourth order runge kutta
method"
} "fourth_order"

schedule.ccl

• You ALWAYS declare STORAGE for your
VARIABLES, and schedule your SUBROUTINE
Schedule definitions for thorn RungeKutta
$Header:$
STORAGE: group1
schedule RungeKutta at EVOL
{
 LANG:F77
} "Runge Kutta ODE Solver"

Checklist

• Interface.ccl: what you implement, what you inherit,
the variables that you use

• param.ccl: the external parameters you control your
thorn through

• schedule.ccl: the storage you need for your variables
(and when) and when you want to call your
subroutines/functions

• README: exactly that, documentation. Make sure you
have something in here.

And now for something completely
different

• Code: add all the source files to your make.code.defn
file. In our case, 1 file only (for now). RungeKutta.F77

• make.code.defn should have:
Main make.code.defn file for thorn RungeKutta
$Header:$

Source files in this directory
SRCS = RungeKutta.F77

Subdirectories containing source files
SUBDIRS =

In your source
• You cannot go wrong with

documentation for your file.

• Always have the following to the
beginning of your file:
 /*@@
 @file RungeKutta.F77
 @date
 @author Yaakoub Y El Khamra
 @desc
 Solve an ODE using
RungeKutta 1st or 4th order
 @enddesc
 @@*/

• Also add the following:
#include "cctk.h”
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "cctk_Functions.h"

Also in your source code....

• For our subroutine, let's add the following:
 subroutine RungeKutta(CCTK_ARGUMENTS)
 implicit none
 DECLARE_CCTK_ARGUMENTS
 DECLARE_CCTK_PARAMETERS
 code.... code... more code...
 end subroutine RungeKutta

More in your source code

• Let's add some local variables:
 CCTK_INT i, CCTK_Equals
 CCTK_REAL k1,k2,k3,k4
 CCTK_REAL x1,y1,x2,y2,x3,y3
 CCTK_REAL my_function

• And let's setup the initial condition:
c Setup the initial condition
 x(1) = x_zero
 y(1) = y_zero

Control Statements using parameters
• Remember our parameters? Let's use them:

c Check the order of RK to use
 if (CCTK_Equals(method_order, "second_order").eq.1) then
 call CCTK_INFO("Using second order Runge Kutta")

c iterate over the x and y arrays

 elseif (CCTK_Equals(method_order, "fourth_order").eq.1) then
 call CCTK_INFO("Using fourth order Runge Kutta")

c iterate over the x and y arrays

 endif

We also need an ODE function:
• Add this way at the bottom of your source file:

c This is the ODE we want to solve: y'=3e(-4x)-2y
 function my_function(x,y)

 implicit none

 CCTK_REAL x, y, my_function
 my_function = 3.0*EXP(-4.0*x)-2.0*y
 return
 end function my_function

Let's write the code

• Check your cheat sheets, you have 2 algorithms that
you need to implement.

• Remember your F77 fortran tutorials and references,
this code is simple, 2 do-end do loops.

• Ask for help if you are stuck anywhere. We can and
will help.

• Once you are done, we need to compile the code, i.e.
Create a configuration

Configuration:

• Let's make a new configuration, called rungekutta

• Pass in the option DEBUG=yes to enable debugging,
this is very handy.

• Attend the debugging tutorials given at CCT

• In short, the command you need to run is the
following:
make rungekutta DEBUG=yes

Building your configuration

• Now that you have configured your configuration, let's
build it

• We will use the thorn in the next slide

• Keep an eye out for warnings and errors. This is a
good time to learn about ccl syntax

• If you get errors or warnings, please ask for help.

ThornList:
• Tutorial2/RungeKutta

•

• CactusBase/LocalReduce

• CactusBase/IOBasic

• CactusBase/IOASCII

• CactusBase/IOUtil

• CactusBase/CoordBase

•

• CactusPUGH/PUGH

• CactusPUGH/PUGHReduce

• CactusPUGH/PUGHSlab

Congratulations you are done
• Write the following to an RK.par file:

ActiveThorns=" IOASCII PUGHSLAB PUGH PUGHREDUCE
LOCALREDUCE IOBASIC IOUTIL COORDBASE RUNGEKUTTA"
cactus::cctk_itlast=1
ioascii::out1D_every=1
ioascii::out1D_vars="RK::x RK::y "
ioascii::out1D_dir="RungeKutta_out"
ioascii::out1D_style="xgraph"
RK::method_order="fourth_order"
RK::x_spacing = 0.001

Run Forest Run...

• To run: ./exe/cactus_RungeKutta RK.par

• To look at output:
vim RungeKutta_out/y_1D.xg

• To plot the output, please attend the gnuplot tutorial at
CCT. It is yet to be announced, if you have preferred
times please let us know.

