Cactus Tutorial

Building and Running Cactus
Yaakoub El Khamra

Cactus Developer, Frameworks Group CCT _

23 May, 2006

' Center for Computation & Technology b»—,._‘
AT LOUISIANA STATE UNIVERSITY

E: = Introduction

* Now that you have successfully obtained a fresh cactus checkout, it is
time to actually compile and run cactus

* If you check the cactus checkout directory, this is what you see:

* arrangements/: directory where the arrangements you checked out
reside

doc/: directory where the documentation resides

lib/: perl scripts and make files that cactus needs to function

src/: the cactus flesh resides in this directory

Makefile: this is the master make file for cactus, and this is your
primary point of interaction with your cactus checkout

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

st Cactus Configuration

* A Cactus configuration is a collection of thorns and their compilation/build options

* Cactus can be built in different configurations from the same copy of the source files,
and these different configurations coexist in the Cact us/ conf i gs directory

* Reasons for having multiple configurations:

* You can have different configurations for different thorn collections compiled into your
executable.

* Different configurations can be for different architectures. You can keep executables
for multiple architectures based on a single copy of source code, shared on a
common file system.

* You can compare different compiler options, debug-modes. You might want to
compile different communication protocols (e.g. MPI or Globus) or leave them out all
together.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

p— Creating a new
B : .
configuration

* The simplest way to build a Cactus“configuration is to use the cactus make
system

* Anmke <configuration_nanme> will prompt the user if they want to create
a configuration with the name: configuration_name

* This generates a configuration with the name conf i gur ati on_nane, doing
its best to automatically determine the default compilers and compilation flags
suitable for the current architecture.

* You can supply a specific list of thorns (henceforth referred to as a thornlist) for
your configuration

* You can also supply a specific list of build options you want Cactus to use for
building your configuration

* You can supply a list of external packages you want Cactus to make use of
during the build process

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

, cct ThornLists

* Thornlists are exacitly that, a list of thorns (and the arrangements they belong
to) that you want compiled into your configuration.

* If you do not specify a thornlist, Cactus will attempt to compile all the thorns
you currently have in your Cactus checkout. This might not always be a good
thing as you probably will not need all the thorns. For this reason, Cactus will
prompt the user if they want to make changes to the default (All Thorns)
thornlist of the configuration if no thornlist is specified

* To specify a thornlist, you can use the THORNLI ST=<Thor nLi st _Fi | e>
option while building the configuration where Thor nLi st _Fi | e is the name of
file containing a list of thorns with the syntax <arrangement name>/<thorn
name>, lines beginning with # or | are ignored.

* You can also use the THORNLI ST_DI R option which specifies the location of
directory containing THORNLI ST. This defaults to the current working directory.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

=t ThornlList Example

* An example of a thornlist file could be:

arrangenent/thorn # inplenments (inherits)
[friend] {shares}

i

Cact usBase/ Boundary # boundary () [] { }

CactusBase/ Cart G'i d3D # grid (coordbase) []
{driver}

Cact usBase/ Coor dBase # CoordBase () [] { }

Cact usBase/ | QASCI | # 1OASCIT () [] {1O

Cact usCFD/ CFDBase # cfdbase (cfdnmesh) [] {
}

Cact usCFD/ CFDEvol vers # cfdevol ver

(cfdbase, cfdnmesh) [] { }

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

gatels Build Options

* There are several methods to specify build options for Cactus
configurations

* Create afile ~/ . cact us/ confi g: All available configuration
options may be set in the file ~/ . cact us/ confi g, any which are
not set will take a default value. The file should contain lines of the
form:<option> [=] ..., The equals sign is optional.

* Add the options to a configuration file and use, gmake <confi g>-
config options=<fil enane>, the options file has the same
format as ~ /.cactus/config.

* Pass the options individually on the command line, gnake

<configuration nane>-config <option nane>=<chosen
val ue>,

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

=t Compilers and Tools

* CC: The C compiler.

* CXX: The C++ compiler.

* F90: The Fortran 90 compiler.
* F77:The Fortran 77 compiler.

* CPP: The preprocessor used to generate dependencies for and to
preprocess C and C++ code.

* FPP: The preprocessor used to generate dependencies for and to
preprocess Fortran code.

* LD: The linker.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

¥ ot

Flags for Compilers
and Tools

* CFLAGS: Flags for the C compiler.

* CXXFLAGS: Flags for the C++ compiler.

* F90FLAGS: Flags for the Fortran 90 compiler.
* F77FLAGS: Flags for the Fortran 77 compiler.

* CPPFLAGS: Flags for the preprocessor (used to generate compilation
dependencies for and preprocess C and C++ code).

* FPPFLAGS: Flags for the preprocessor (used to generate compilation
dependencies for and preprocess Foriran code).

* LDFLAGS: Flags for the linker. This variable is ignored while the
compilers and linkers are autodetected.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

= ot Useful Flags

* DEBUG: Specifies what type of debug mode should be used, the default is no
debugging. Current options are yes, no, or memory. The option yes switches on all
debugging features, whereas memory just employs memory tracing (B10.3).

* OPTIMISE, OPTIMIZE: Specifies what type of optimisation should be used. The only
options currently available are yes and no. The default is to use optimisation.

* C_OPTIMISE_FLAGS: Optimisation flags for the C compiler, their use depends on the
type of optimisation being used.

* CXX _OPTIMISE_FLAGS: Optimisation flags for the C++ compiler, their use depends on
the type of optimisation being used.

* F90_OPTIMISE_FLAGS: Optimisation flags for the Fortran 90 compiler, their use
depends on the type of optimisation being used.

* F77_OPTIMISE_FLAGS: Optimisation flags for the Fortran 77 compiler, their use
depends on the type of optimisation being used.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

sat More Useful Flags

C_WARN_FLAGS:Warning flags for the C compiler, their use depends on the type of
warnings used during compilation

* CXX_WARN_FLAGS: Warning flags for the C++ compiler, their use depends on the type of
warnings used during compilation

* F90_WARN_FLAGS: Warning flags for the Fortran 90 compiler, their use depends on the
type of warnings used during compilation

* F77_WARN_FLAGS: Warning flags for the Fortran 77 compiler, their use depends on the
type of warnings used during compilation

* C_LINE _DIRECTIVES: Whether error messages and debug information in the compiled C
and C++ files should point to the original source file or to an internal file created by Cactus.
The only options available are yes and no, the default is no. Set this to no if your compiler
reports error messages about unrecognised # directives.

* F_LINE_DIRECTIVES: Whether error messages and debug information in the compiled
Fortran files should point to the original source file or to an internal file created by Cactus. The
only options available are yes and no, the default is no. Set this to no if your compiler reports
error messages about unrecognized # directives.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

st External Packages

* Cactus can be compiled with support for external packages.

* Some thorns cannot be compiled without extra packages (EIIPETSc
for example requires PETSc)

* Common external libraries and their build options:

* MPI: The MPI package to use, if required. Supported values are
CUSTOM, NATIVE, MPICH or LAM.

HDF5: Supported values are yes, no. A blank value is taken as no.

LAPACK: Supported values are yes, no. A blank value is taken as
no.

PETSC: Supported values are yes, no. A blank value is taken as no.

PTHREADS: Supported values are yes.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

5 ot MP|

* MPI stands for Message Passing Interface

* MPI provides inter-processor communication. It can either be
implemented natively on a machine (this is usual on most
supercomputers), or through a standard package such as MPICH,
LAM, WMPI, or PACX.

* To compile with MPI, the configure option is: MPI = <MPI _TYPE>,
where MPI = <MPI _TYPE> can take the values: CUSTOM, NATIVE,
MPICH, LAM, WMPI, HPVM, MPIPro, PACX

* For more details please consult the Cactus Users Guide section A
2.1.3

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

u
. ot MPICH
* You will be using MPICH in the tutorials later on

* Options for MPICH are as follows:
* MPI CH_ARCH: machine architecture.

* MPI CH DI R: directory in which MPICH is installed. If this option is
not defined it will be searched for.

* MPI CH_DEVI CE: the device used by MPICH. If not defined, the
configuration process will search for this in a few defined places.
Supported devices are currently ch_p4, ch_shnmem gl obus and
myrinet(ch_gm.

* If MPI CH_DEVI CE is chosen to be ch_gm (http://www.myri.com), an

additional variable must be set: MYRI NET_DI R: directory in which
Myrinet libraries are installed.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

u
g ot HDF5
* You will also be using HDF5 in the tutorials later on

* The build options for HDF5 are as follows:
e HDF5 = yes/ no
e HDF5 DIR = <dir>

* Depending on your architecture, you might need to set the path for libz
or libsz. This can be done using the following options:
e LIBZ DIR = <dir>
e LIBSZ DIR = <dir>

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

= act Building a Configuration

* Once you have created a new configuration, the command gnake
<configuration nane>, willbuildan executable, prompting you
along the way for the thorns which should be included if no thornlist
were specified in the creation stage

* To revisit the thornlist Cactus is compiling you can type: gmake
<config>-thornli st

* Oryou can edit it using gnmake <confi g>-editthorns

* Instead of using the editor to specify the thorns you want to have
compiled, you can edit the ThornList outside the make process. It is
located in confi gs/ <confi g>/ Thor nLi st , where <conf i g> refers
to the name of your configuration.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

8 act \lake options for building

* gnmake <target> PROVWPT=no: turns off all prompts from the make
system.

* gnmake <target> SlILENT=no: print the commands that gmake is
executing.

* gnmake <target> WARN=yes: show compiler warnings during
compilation.

* gnake <target> FIOBS=<nunber >: compile in parallel, across
files within each thorn.

* gnake <target> TJOBS=<nunber >: compile in parallel, across
thorns.

* Note that with more modern versions of gmake, it is sufficient to pass
the normal -j <nunber > flag to gnake to get parallel compilation.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

Bat If all goes well....

* If all goes well you will now have a cactus executable residing in your
newly created exe/ directory

* Cactus executables always run from a parameter file (which may be a
specified as a command line argument taken from standard input),
which specifies which thorns to use and sets the values of any
parameters which are different from the default values.

* There is no restriction on the name of the parameter file, although it is
conventional to use the file extension .par

* Optional command line arguments can be used to customize runtime
behavior, and to provide information about the thorns used in the
executable.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

. To run your cactus
B
executable

./ cactus_<config> <paraneter file> [command |i ne
opt i ons]

or if the parameter file should be taken from standard input:
./ cactus_<config> [command |ine options] -

Remember that cactus executables are created in the
exe/ directory. For MPI enabled Cactus executables,

you can run Cactus as follows:

npirun -np <nunber> ./cactus_<config> <paraneter file>
[command | i ne options]

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

2t Command line options

-O or -describe-all-parameters: Produces a full list of all parameters from all
thorns which were compiled, along with descriptions and allowed values. This
can take an optional extra parameter v (i.e. -Ov to give verbose information
about all parameters).

-o<param> or -describe-parameter=<param>: Produces the description and
allowed values for a given parameter -- takes one argument.

-T or -list-thorns: Produces a list of all the thorns which were compiled in.

-t<arrangement or thorn> or -test-thorn-compiled=<arrangement or thorn>:
Checks if a given thorn was compiled in -- takes one argument.

-h, -? or -help: Produces a help message.

-v or -version: Produces version information of the code.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

2t Command line options

-W<level> or -warning-level=<level>: Sets the warning level of the code. All
warning messages are given a level -- the lower the level the greater the
severity. This parameter controls the level of messages to be seen, with all
warnings of level 4#4 <level> printed to standard output (warnings with level
<= <level> are silently discarded). The default is a warning level of 1, meaning
that only level 0 and level 1 messages should be printed.

-E<level or -error-level=<level>: This is similar to -W, but for fatal errors: Cactus
treats all warnings with level <= <level> as fatal errors, and aborts the Cactus
run immediately (after printing the warning message). The default value is
zero, only level 0 warnings will abort the Cactus run.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

2t Command line options

-r[o|e|oeleo] or -redirect=[o|e|oe|eo]: This redirects the standard output
(‘0') and/or standard error ("e') of each processor to a file. By default
the standard outputs from processors other than processor 0 are
discarded.

-i or -ignore-next: Ignore the next argument on the command line.

-parameter-level=<level>: Set the level of parameter checking to be used,
either strict, normal (the default), or relaxed

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

E: ok Parameter file

* A parameter file (or par file) is used to control the behavior of a
Cactus executable. It specifies initial values for parameters as defined
in the various thorns' param.ccl files

* A parameter file is a text file whose lines are either comments or
parameter statements. Comments are blank lines or lines that begin
with either "# or "!I'. A parameter statement consists of one or more
parameter names, followed by an "=', followed by the value(s) for this
(these) parameter(s). All string parameters are case insensitive.

* The first parameter statement in any parameter file should set
ActiveThorns, which is a special parameter that tells the program
which thorns are to be activated. Only parameters from active thorns
can be set (and only those routines scheduled by active thorns are
run). By default all thorns are inactive

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

s et Parameter file syntax

o Parameters following the ActiveThorns parameter all have names
whose syntax depends on the scope of the parameter

* Global parameters: Just the name of the parameter itself. Global
parameters are to be avoided; there are none in the Flesh and Cactus
Toolkits.

« Restricted parameters: The name of the implementation which defined
the parameter, followed by two colons, then the name of the parameter
--e.g.driver::global nx.

e Private parameters: The name of the thorn which defined the
parameter, two colons, and the name of the parameter -- e.g.
wavet oyF77: . anpl it ude.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

s at Parameter file example

ActiveThorns = "CoordBase localreduce SymBase NaNChecker PUGHReduce CartGrid3D PUGH
Boundary |IOBasic IOUtil IOASCII IDWaveMoL PUGHSIab WaveMoL Time MoL"

#Cactus Flesh parameters

cactus::cctk itlast = 100

#Driver restricted parameters
driver::global_nx = 51

driver::global_ny = 51

driver::global_nz = 51

#Sample output parameters
iobasic::outScalar_every = 1
iobasic::outScalar_vars = "wavemol::phi"
ioascii::out1D_every = 2
ioascii::out1D_vars = "wavemol::scalarevolvemol_scalar wavemol::energy"

|O::out_dir = “Sample_output”

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

E: X onfiguration Administration

« As described earlier, the Cactus Makefile is useful for more than just
creating and building configurations

 The makefile allows you to administer your cactus configurations
« Common configuration administration targets:

e gmake <config>-clean: removes all object and dependency files from a
configuration.

« gmake <config>-cleandeps: removes all dependency files from a
configuration.

e gmake <config>-cleanobjs: removes all object files from a
configuration.

e gmake <config>-config: creates a new configuration or reconfigures an
old one.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

E: X onfiguration Administration

e gmake <config>-cvsupdate: updates the Flesh and thorns for a
configuration using CVS

e gmake <config>-delete: deletes a configuration (rm -r
configs/<config>).

e gmake <config>-editthorns: edits the ThornList.

e gmake <config>-examples: copies all the example parameter files
relevant for this configuration to the directory examples in the Cactus
home directory. If a file of the same name is already there, it will not
overwrite it.

* gmake <config>-realclean: removes from a configuration all object and
dependency files, as well as files generated from the CST. Only the
files generated by configure and the ThornList file remain.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

E: X onfiguration Administration

« gmake <config>-rebuild: rebuilds a configuration (reruns the CST).

o gmake <config>-rebuild: reconfigures an existing configuration using its previous
configuration options

e gmake <config>-testsuite: runs the test programs associated with each thorn in the
configuration.

e gmake <config>-thornlist: regenerates the ThornList for a configuration

« gmake <config>-ThornGuide: builds documentation for the thorns in this configuration.
« gmake <thorn>-ThornDoc: builds the documentation for the thorn.

« gmake ThornDoc: builds the documentation for all thorns.

« gmake ArrangementDoc: builds the documentation for all arrangements.

« gmake <config>-configinfo: displays the options used to build the configuration.

e gmake <config>-cvsupdate: updates the Flesh and this configuration's thorns from the
CVS repositories.

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

E: il Getting Help

« gmake UsersGuide: runs LaTeX to produce a copy of the Users' Guide.

« gmake ThornGuide: runs LaTeX to produce a copy of the Thorn Guide,
for all the thorns in the arrangements directory.

« gmake MaintGuide: runs LaTeX to produce a copy of the Maintainers'
Guide.

e gmake ReferenceManual: runs LaTeX to produce a copy of the
reference manual

« All of this information can be retrieved using the ultimate make target:
gmake help

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

< < =

Questions

CENTER FOR COMPUTATION & TECHNOLOGY AT LOUISIANA STATE UNIVERSITY

