
Alpaca
Cactus Tools for

Application Level Profiling and Correctness Analysis

E. Schnetter (PI), G. Allen, T. Goodale, M. Tyagi
Center for Computation & Technology, LSU

8/28/07

Cactus Code
• Freely available, modular, portable and

manageable environment for collaboratively

developing parallel, high-performance multi-

dimensional simulations (Component-based)

• Developed for Numerical Relativity, but now

general framework for parallel computing

(CFD, astro, climate, chem eng, quantum

gravity, …)

• Finite difference, AMR (Carpet, Samrai,

Grace), new FE/FV, multipatch

• Active user and developer communities,

main development now at LSU and AEI

(Germany).

• Open source, documentation, etc

8/28/07

• Designed for portability: IPAQ, PS2, Xbox to

– Itanium’99, EarthSim, BG/L, …

• Benchmarking for CCT NSF “Big Iron” bid

– Cactus now key application for PetaScale computing

– DOE/NSF 4yr time scale, 500K(?) processors

– 33K procs on BG/L but now new complex data
structures (AMR)

• Drives research issues for perf. prediction,
scalability, hardware design

First Itanium App (1999)

BG/L (2006)

Performance and

Optimization

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 4 16 64 256 1024 4096

w
a
ll

ti
m

e
 /
 g

ri
d

 p
o

in
t

[µ
s
]

processors

100
3
 WaveToy on Abe

PUGH, MPI only
Carpet, 1 level, MPI only

Carpet, 1 level, MPI+OpenMP

Alpaca

Cactus Framework

MPI/OpenMP
driver layer

Physics
Modules

Physics
Modules

Remote
Visualisation

Efficient
I/O methods

Physics
Modules

High-level
Debugging

High-level
Profiling

Scheduling,
Steering

High performance computing is at a critical crossroads
in at least three areas:
(i) Hardware: Radically new petascale architectures

exceeding a million processors are being designed
for deployment;

(ii) Software: Standard approaches to system software
are outdated;

(iii) Complex Applications: Traditional, simplified,
static applications, developed by single groups, are
evolving towards highly complex codes that require
teams of researchers and computer scientists to de-
velop and use.

Alpaca will develop, at the application level:
(i) New fault tolerant capabilities that will be needed

for increasingly large scale machines
(ii) New performance monitoring capabilities which

will make it much easier to determine how the
more complex application codes perform on current
and future hardware

(iii) New interactive debugging capabilities, critical to
locate and cure software or algorithmic errors

(iv) Integration with Eclipse, the increasingly popular
code development environment.

Alpaca will be developed with full involvement from
application developers across a broad range of areas.

3

Application ALPACA Users Abbreviated List of Requirements

Numerical
Relativity

Erik Schnetter (LSU, PI),
Pablo Lagunaa (Penn State),
Edward Seidel (LSU, SI),
Luciano Rezzollaa (AEI),
Manuela Campanellia (U. Texas)

Large scale simulations. Interest and involvement in
new architectures and paradigms. Adaptive mesh re-
finement introduces new performance issues which need
ALPACA tools.

Computational
Fluid
Dynamics

Mayank Tyagi (LSU, co-PI), Yaak-
oub El-Khamra (LSU), Kum Won
Cho (KISTI)

Multi-block simulations and unstructured meshes lead
to difficulties in load balancing. Many existing packages
need to be integrated. Using the Cactus CFD Toolkit as
educational HPC tool.

Reservoir
Simulations

Christopher White (LSU, SI),
Mayank Tyagi (LSU, co-PI)

High-throughput simulations. Complex geometries,
elaborate physical models.

Coastal
Modeling

Jim Chen (LSU, SI), Mayank
Tyagi (LSU, co-PI)

Simulations require robustness & reliability. Long-term
simulations (many time steps) on massively parallel com-
puters.

Quantum
Gravity

David Rideouta (Imperial Col-
lege, UK)

Young field, requires experimenting with a wide variety
of algorithms, not necessarily PDE based. Performance
crucial.

Astrophysics Joel Tohline (LSU) Large scale simulations. Interest and involvement in new
architectures and paradigms. Efficient solvers for elliptic
equations need ALPACA tools.

aSee letter of support

Table I: ALPACA will work closely with the Cactus application developers and users in this table to pro-
vide detailed requirements and usecases, to test and improve tool implementations, to ensure that software
works effectively on a wide range of architectures, and to help provide documentation and support to the
wider community of existing and new Cactus users.

new large scale capacity acquisitions. A version has been incorporated into the recently released
SPEC CPU2006 benchmarking suite [156].

Although numerical relativity remains the main Cactus user base, the computational frame-
work is generalized, and Cactus is now increasingly being used for scientific investigations in a
wide range of other application areas including astrophysics, quantum gravity, chemical engineer-
ing, Lattice Boltzmann Methods, econometrics, computational fluid dynamics, and coastal and
climate modeling [157–165]. In ALPACA we will work closely with developers and users in sev-
eral of these areas, listed in Table I, and described in more detail in Section II A below.

Cactus has been a driving framework for computing infrastructure projects particularly in Grid
and Network Computing, e.g. NSF GrADS [166], EU GridLab [167], German GriKSL [168], NSF
ASC [164, 169], NSF Enlightened Computing [170] and others. Cactus is also used in new initia-
tives in Louisiana to help bring scientists to the field of HPC, particularly through the Louisiana
Optical Network Initiative (LONI) [171].

Cactus is also seen as a prime enabling environment for petascale computing. Its impressive
scaling and portability provide an ideal base to develop petascale applications. The ALPACA
project will provide debugging, profiling and fault-tolerance features which are essential to ef-
fective development of such applications and effective use of petascale machines. The profiling
infrastructure in particular will enable the development of new parallel driver components which
will enable the efficient use of the current trend towards multi-core processors and hardware ar-
chitectures with a hierarchy of bandwidths and latencies.

Cactus developers have received numerous prestigious prizes and awards, both for their in-

6

Gabriela, a young postdoc from Córdoba in Argentina, wants to perform the final tests for
her new wave extraction module. She takes a set of well-tested components for binary black
hole initial data, time evolution, boundary conditions, etc., and adds her new module to it.
After building the application on the Tezpur supercomputer at LSU, she submits a job using a
new parameter file she created.

Using the ALPACA debugger user interface, she watches the signal as the gravitational
waves are detected by her module. She notices that the waveform amplitude increases with
radius, which is unphysical. Still using the debugger, and still from within the same job,
she single-steps through the individual algorithmic steps of her wave extraction module. She
notices that the problem is caused by the lapse function, which has unexpectedly small values
at small radii. Correspondingly, she switches to a different gauge condition, and after a few
iterations the lapse starts to grow. Since this effect is only visible in binary black hole systems,
she could not have detected it on a single-processor machine. After correcting this problem,
she moves on to setting up a simulation with a high resolution to reproduce a known published
result.

While waiting for the results of this simulation, she notices that the simulation makes only
slow progress. Using the same ALPACA user interface, she activates some interactive perfor-
mance monitoring tools for this run. These tools profile the ongoing simulation, and then access
a server with “performance experience” from earlier runs without her new module, showing
her that her new simulation runs only half as fast as “it should”. Having this background
knowledge, she is able to pinpoint the problem to a recent change in the horizon finder – not
in her own code, as she first assumed. She then writes an email to the horizon finder developer
asking for advice.

Without ALPACA, she would have had to submit many runs, repeatedly wasting time in the
job queue. She would have had to add “print statements” (explicit calls to file I/O routines) to get
access to intermediate data. Tracking down the source of the performance problem would have
required her to submit several production jobs, modifying her parameter files to obtain timing
data for comparison. This tedious procedure would have cost her at least a week of wrestling
supercomputers and their job submission systems. By using ALPACA, she was able to achieve her
goals in a single day.

We propose a multi-layered approach for ALPACA. Effective understanding of code and ma-
chine requires, on one hand, an interactive component, which we will provide as a user interface
allowing remote access to production level simulations on supercomputers. It requires on the other
hand a software framework allowing interaction with a running simulation, to obtain data about
it and to be able to steer it. We will provide this by developing a special API and by implementing
this API for the Cactus framework and our key science applications.

Today’s large scale simulation codes are not homogeneous programs any more. They consist of
many components, have matured over many years, are written in different languages, and often
use a software framework to hold things together. One can usually assume that each of these com-
ponents has been tested in isolation on small machines. However, combining these components
and using them on a supercomputer with a computing power that is many orders of magnitude
larger can lead to unforeseen things occurring. And since the components are combined by the
end user, not by an application developer, it is important to empower the end user to debug and
profile the application.

In contrast to many existing free and commercial utilities, the ALPACA tools will not be external
to the application, but will be built-in, so that they have direct high-level access to information
about the running application, and can interact with the user on a correspondingly high level. We
call this the application level, as opposed to debugging or profiling on the code level, which deals with
individual Fortran variables or MPI calls. While it is important to deal with code-level problems

